

Masonry micro-dams (Mali)

Micro-barrage en pierres maçonnées (French)

DESCRIPTION

The role of masonry micro-dams is to raise the level of the water table so as to supply wells and create water reserves for off-season farming activities.

A masonry micro-dam is a structure built of dressed stone pointed with cement mortar. The width of the crest is 0.75 metres. The length generally ranges from 100 to 200 metres depending on the site. The height varies between two and four metres. The dam creates a water reservoir upstream covering an area of around 5 to 15 hectares. Micro-dams are equipped with buttresses and a stilling basin. Each dam has a sluice fitted with a stoplog gate for draining away sediment during the first rains of the season and to regulate water levels. The use of stoplog gates is recommended instead of sluice gates, as the latter are more technically sophisticated and require more maintenance. Farming is carried out upstream and downstream in the rainy cancer pad off cases downstream in the rainy season and off-season.

The dam increases the amount of available surface water during the rainy season and groundwater during the off-season. This results in increasing the farmland area as well as yields and production. A second growing season is made possible. Its effect on the water table depends on the depth of the scheme's foundations: the deeper the foundations, the greater the recharge of ground water. During the rainy season, the lands are used for rice growing. The wells used for irrigating market gardens are fed from the water table, meaning vegetables can be grown off-season. The water is also used for watering livestock, fish farming and, sometimes, domestic purposes.

Implementation steps: An information and awareness-raising workshop is organised on the IPRO-DB approach at the commune level, involving the villages affected by the project. A general meeting is held to secure the support of the whole village for the development request. The village chief and commune mayor sign off the request. The project team carries out a scoping study and socio-economic surveys. If the outcomes of the scoping study phase and socio-economic surveys, the terms of reference are drawn up for working with consultancies. Consultancies are selected through tender processes to carry out the technical studies and create the invitation to tender document. The project team monitors the consultancies' delivery of the technical studies. The village mayor and company sign the wards the project. The management committee is set up and organisational and technical training is provided to beneficiaries. Exchange visits are organised with villages that have experience in installing these schemes. The project team, village, mayor and company sign the morrandum of understanding. Stone breaking gets underway. Landowners sign the supervisory consultancy selected. The building contractor and supervisory consultancy are introduced to the village and begin the building work. Local labour is employed in building the scheme. Partial acceptance of the building works (for example, foundations, wall, buttresses, stilling basin, gabion reinforcements, etc.) is granted. The project the scheme is granted. Final acceptance is granted after one year. A management committee takes charge of opening and closing stoplog gates, organises the maintenance of the scheme and institutes additional measures to protect the scheme (gabions, stone bunds, etc.). It collects and manages maintenance fees, ensures the committee's rules of procedure are adhered to and organises meetings of local producers. With minimum levels of maintenance, a scheme will remain functional for at least 20 years. Implementation steps: An information and awareness-raising workshop is organised on the

Around 60 masonry dams have been built or rehabilitated in the Bandiagara and Bélédougou areas

LOCATION

Location: Bandiagara and Bélédougou area, Mali, Mali

No. of Technology sites analysed:

Geo-reference of selected sites n.a.

Spread of the Technology: evenly spread over an area (approx. 1-10 km2)

In a permanently protected area?:

Date of implementation: 10-50 years ago

Type of introduction

- through land users' innovation as part of a traditional system (> 50 years) during experiments/ research
- through projects/ external interventions

CLASSIFICATION OF THE TECHNOLOGY

Main purpose

Land use

improve production reduce, prevent, restore land degradation

conserve ecosystem

protect a watershed/ downstream areas - in combination with other Technologies

- preserve/ improve biodiversity
- reduce risk of disasters

1

1

•

adapt to climate change/ extremes and its impacts

restore/ rehabilitate severely degraded land

• irrigation management (incl. water supply, drainage)

surface water management (spring, river, lakes, sea)

- mitigate climate change and its impacts
- create beneficial economic impact
- create beneficial social impact

Purpose related to land degradation

prevent land degradation

reduce land degradation

adapt to land degradation

water diversion and drainage

Land use mixed within the same land unit: Ja - Agro-silvopastoralism

Cropland (C^{EEE}

• Annual cropping Number of growing seasons per year: 1

Waterways, waterbodies, wetlands - Ponds, dams

Water supply

- rainfed
- mixed rainfed-irrigated full irrigation

Degradation addressed

biological degradation - Bc: reduction of vegetation cover

water degradation - Ha: aridification, Hg: change in groundwater/aquifer level

SLM measures

structural measures - S5: Dams, pans, ponds

TECHNICAL DRAWING

SLM group

not applicable

Technical specifications

A masonry micro-dam is a structure built of dressed stone pointed with cement mortar. The width

of the crest is 0.75 metres. The length generally ranges from 100 to 200 metres depending on

the site. The height varies between two and four metres. The dam creates a water reservoir

upstream covering an area of around 5 to 15 hectares. Micro-dams are equipped with buttresses

and a stilling basin. Each dam has a sluice fitted with a stoplog gate for draining away sediment

during the first rains of the season and to regulate water levels.

Technical knowledge required for field staff / advisors: high Technical knowledge required for land users: low Main technical functions: increase of infiltration, increase / maintain water stored in soil, increase of groundwater level / recharge of groundwater, water harvesting / increase water supply, water spreading

Dam/ pan/ pond Height of bunds/banks/others (m): 2-4 Width of bunds/banks/others (m): 0.75 Length of bunds/banks/others (m): 100-200

ESTABLISHMENT AND MAINTENANCE: ACTIVITIES, INPUTS AND COSTS

Calculation of inputs and costs

- Costs are calculated:
- Currency used for cost calculation: CFA Franc •
- Exchange rate (to USD): 1 USD = 517.0 CFA Franc •
- Average wage cost of hired labour per day: n.a •

Most important factors affecting the costs

Each dam costs between 100 and 140 million CFA francs (195'583-273'817 Dollar). Costs are reduced as a result of the availability of local materials and the fact that local masons and contractors are well versed in this type of technology.

Establishment activities

- 1. information and awareness-raising workshop (Timing/ frequency: None)
- 2. village chief and commune mayor sign off the request (Timing/ frequency: None)
- 3. project team carries out a scoping study and socio-economicsurveys (Timing/ frequency: None)
- 4. Consultancies are selectedthrough tender processes to carry out the technical studies (Timing/ frequency: None)
- 5. management committee is set up and organisational andtechnical training is provided to beneficiaries (Timing/ frequency: None)
- 6. Exchange visits are organised with villages that have experience ininstalling these schemes. (Timing/ frequency: None)
- 7. building contractor and supervisory consultancy are introduced to the village and begin thebuilding work. Local labour is employed in building the scheme. (Timing/ frequency: None)

Establishment inputs and costs

Buttress cladding Stilling basin Watertight wall Hard core Reno mattresses Drain Riprapfooting C Stilling basin footing Rockfill Reinforced Foundation concrete

Author: IPRO-DB

Specify input	Unit	Quantity	Costs per Unit (CFA Franc)	Total costs per input (CFA Franc)	% of costs borne by land users
Other					
total construction		1.0	273817.0	273817.0	100.0
Total costs for establishment of the Technology				273'817.0	
Total costs for establishment of the Technology in USD				529.63	

Maintenance activities

1. a management committee takes charge of opening and closing stoplog gates, organises themaintenance of the scheme and institutes additional measures to protect the scheme (gabions, stone bunds, etc.). It collects and manages maintenance fees, ensures the committee's rules ofprocedure are adhered to and organises meetings of local producers (Timing/ frequency: None)

communal/ village group individual, not titled individual, titled

leased individual

Water use rights

open access (unorganized) communal (organized) leased individual

Access to services and infrastructure

health	poor 🎽	good
education	poor 🧹	good
technical assistance	poor 🧹	good
employment (e.g. off-farm)	poor 🖌	good
markets	poor 🧹	good
energy	poor 🖌	good
roads and transport	poor 🖌	good
drinking water and sanitation	poor 🖌	good
financial services	poor 🧹	good

IMPACTS		
Socio-economic impacts		
Crop production	decreased 🖌 🖌 🖌 increased	
risk of production failure	increased 🖌 🖌 decreased	
production area (new land under cultivation/ use)	decreased v increased	
farm income	decreased v increased	
Socio-cultural impacts		
food security/ self-sufficiency	reduced 🖌 🖌 🖌 improved	
conflict mitigation	worsened 🖌 🖌 improved	
Contribution to human well-being		
	decreased error increased	Better levels of production increase producers' incomes and improve living conditions.
Ecological impacts water quantity	decreased	

Ecological impacts			
water quantity	decreased		increased
harvesting/ collection of water (runoff, dew, snow, etc)	reduced	✓ ✓	improved
groundwater table/ aquifer	lowered	1	recharge
soil moisture	decreased	1	increased

Off-site impacts	
COST-BENEFIT ANALYSIS	
Benefits compared with establishm	ent costs
Short-term returns	very negative
Long-term returns	very negative
Benefits compared with maintenan	e costs
Short-term returns	very negative very positive
Long-term returns	very negative very positive

CLIMATE CHANGE

Gradual climate change annual temperature increase	not well at all	<i>✓</i>	very well
Climate-related extremes (disasters)			
local rainstorm	not well at all	1	very well
local windstorm	not well at all	1	very well
drought	not well at all	1	very well
general (river) flood	not well at all	1	very well
Other climate-related consequences	_		
reduced growing period	not well at all	~	very well

ADOPTION AND ADAPTATION

Percentage of land users in the area who have adopted the Technology

single cases/ experimental

Of all those who have adopted the Technology, how many have done so without receiving material incentives?

la Nee

To which changing conditions?

climatic change/ extremes changing markets labour availability (e.g. due to migration)

CONCLUSIONS AND LESSONS LEARNT

Strengths: land user's view

Strengths: compiler's or other key resource person's view

- Micro-dams increase farmland area, yields and production. Better levels of production increase producers' incomes and improve living conditions.
- Generates employment throughout the year. Seasonal outmigration is reduced.
- With minimum levels of maintenance, a scheme will remain functional for at least 20 years.
- raise the level of the water table to supply wells and create water . reserves for off-season farming activities

REFERENCES

Compiler Dieter Nill Editors

Date of documentation: Sept. 24, 2014

Resource persons

Dieter Nill - SLM specialist Mamadou Gallo Kone - SLM specialist Ralf Schneider - SLM specialist

Full description in the WOCAT database https://qcat.wocat.net/af/wocat/technologies/view/technologies_1632/

Linked SLM data

n.a.

Documentation was faciliated by

Institution

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH (GIZ) - Germany

Project

• Manual of Good Practices in Small Scale Irrigation in the Sahel (GIZ)

Key references

- IPRO-DB (2007): Fiches techniques des barrages individuels. [Data sheet on individual dams]:
- Manual of Good Practices in Small Scale Irrigation in the Sahel. Experiences from Mali. Published by GIZ in 2014.: http://star-•
- www.giz.de/starweb/giz/pub/servlet.starweb
- IPRO-DB: Module de formation pour la préparation des aménagements [Training module on preparing schemes] (avail-able in French and Bambara):
- IPRO-DB: Module de formation sur l'entretien des ouvrages [Training module on scheme maintenance] (available in French and Bambara): IPRO-DB: Approches du projet de l'irrigation de proximité au Pays Dogon et dans le Bélédougou [Small-scale irrigation project approaches in
- Dogon Country and in the Bélédougou region], (O. Fritz, Technical Assistant, GIZ, December 2011):

This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0 International

Weaknesses/ disadvantages/ risks: land user's viewhow to overcome

Weaknesses/ disadvantages/ risks: compiler's or other key resource person's viewhow to overcome

Reviewer

Deborah Niggli Alexandra Gavilano

- Beneficiaries occasionally fail to monitor and maintain schemes.
- lack of quality rubble

Last update: Mei 27, 2019

11-50% 51-90%

91-100%

Wocat SLM Technologies