

Land preparation for riverbed farming in Kailali District (Juerg Merz)

Riverbed farming (Nepal)

Bagar Kheti (Main Contributors: Elam Plus and Hari Gurung, Helvetas Nepal)

DESCRIPTION

Riverbed farming can be used to increase household income and to improve the food security of landless and land-poor households in the Terai area of Nepal.

It is estimated that about 8,000 hectares of riverbed land would be suitable for agricultural cultivation in the Kailali and Kanchanpur Districts in the Western Terai areas of Nepal. After the river water recedes in the post-monsoon season, vegetables are planted in ditches dug into the seasonal sand banks; the crops are harvested before the onset of the next monsoon. In 2006, Elam Plus of HELVETAS Swiss Inter-cooperation Nepal, assessed local practices of riverbed farming and piloted an improved approach with 670 farmers, mostly from the indigenous Tharu community. During the first year they cultivated 43 hectares. Since the initial results indicated that riverbed farming could increase the target population's income significantly, the programme was expanded from the initial two districts (Kailali and Kanchanpur) to two new districts (Banke, and Bardiya). The number of households was increased to 2000 in 2008 and 3165 in 2012 after the initiative won a Global Development Market Place award from the World Bank.

Establishment / maintenance activities and inputs: Requirements for riverbed farming: • On average, the water table should not be lower than 1 m; when the water table is lower

Plots are allocated perpendicular to the river flow in order to give each farmer access to a variety of land types (and moisture levels) suitable for different crops.
Ditches are up to 1 m deep and 1 m wide. The length depends on how much land is variety of land types (and moisture levels) suitable for different crops.

available.

• A row-to-row spacing of 2–3 m (between the ditches) and plant-to-plant spacing of 0.5–1 m is

The ditches are dug in an east-west orientation to maximize the amount of sunshine they receive and to minimise the collection of sand carried by the prevailing winds.

• Riverbed farmers can build shelters close to their plots so that they can be close at hand to fend off thieves and wild animals.

LOCATION

Location: Kanchanpur, Kailali Districts, Nepal

No. of Technology sites analysed:

Geo-reference of selected sites • n.a.

Spread of the Technology: evenly spread over an area (4.0 km²)

In a permanently protected area?:

Date of implementation:

Type of introduction

- through land users' innovation as part of a traditional system (> 50 years)
- during experiments/ research through projects/ external interventions

Bitter gourd produced on riverbed land in Kanchanpur District (Juerg Merz)

CLASSIFICATION OF THE TECHNOLOGY

Main purpose

- improve production
- reduce, prevent, restore land degradation
 - conserve ecosystem protect a watershed/ downstream areas - in combination with
- other Technologies
- preserve/ improve biodiversity
- reduce risk of disasters
- adapt to climate change/ extremes and its impacts
- mitigate climate change and its impacts
- create beneficial economic impact
- create beneficial social impact

Purpose related to land degradation

prevent land degradation reduce land degradation \checkmark restore/ rehabilitate severely degraded land adapt to land degradation not applicable

SLM group

- improved ground/ vegetation cover
- use different type of land for cultivation

Land use

Cropland • Annual cropping: vegetables - other Number of growing seasons per year: 1

Water supply

rainfed mixed rainfed-irrigated full irrigation

Degradation addressed

soil erosion by water - Wr: riverbank erosion

SLM measures

agronomic measures - A2: Organic matter/ soil fertility

structural measures - S3: Graded ditches, channels, waterways

TECHNICAL DRAWING

Technical specifications

Plots for riverbed farming are allocated perpendicular to the river flow and the ditches are dug in an east-west orientation.

Technical knowledge required for land users: moderate

Main technical functions: increase / maintain water stored in soil, Support Income Generation

Secondary technical functions: improvement of ground cover, increase in organic matter, Stabilizes the soil

All costs and amounts are rough estimates by the technicians and

Author: J Merz, AK Thaku

Most important factors affecting the costs

ESTABLISHMENT AND MAINTENANCE: ACTIVITIES, INPUTS AND COSTS

Calculation of inputs and costs

- Costs are calculated: per Technology area (size and area unit: • ha)
- Currency used for cost calculation: USD .
- Exchange rate (to USD): 1 USD = n.a
- Average wage cost of hired labour per day: n.a •

.

. .

1.5

Establishment activities

1. Dig ditches in an east-west direction about 2 to 3 m apart. The ditches can be up to 1 m deep and 1 m wide; the length will depend on the shape of the land. (Timing/ frequency: None)

authors.

- 2. Apply fertilizer: farmyard manure/compost about 12 tonnes; urea about 100 kg; di-ammonium phosphate (DAP) about 120 kg; and potash about 30 kg per ha. (Timing/ frequency: None)
- 3. Plant seeds/seedlings using the appropriate row-to-row (RXR) and plant-to-plant (PXP) distance for at least one crop. A row-to-row distance of 3 m is required for bottle gourd, pumpkin, and water melon and 2 m for bitter gourd and cucumber; a plant-to-plant distance of 0.5 m is needed for cucumber and bitter gourd and 1 m for water melon, bottle gourd, and pumpkin. (Timing/ frequency: None)

Specify input	Unit	Quantity	Costs per Unit (USD)	Total costs per input (USD)	% of costs borne by land users
Labour					
Dig ditches and applying fertilizer and manure	ha	1.0	232.0	232.0	100.0
Equipment					
Sprayer, watering cans, spade	ha	1.0	42.0	42.0	
Fertilizers and biocides					
Seeds, chemical fertilizer	ha	1.0	267.0	267.0	
Construction material					
Plastic bags, mulching material	ha	1.0	21.0	21.0	
Total costs for establishment of the Technology					
Total costs for establishment of the Technology in USD				562.0	

.

. .

E (1 12 1

Maintenance activities

1. Water new plots every 2 to 3 days; as the seedlings mature, water weekly or as needed depending on the weather and the soilconditions. (Timing/ frequency: None)

2. Replace seedlings that have died and replant seeds in places where they have not germinated (Timing/ frequency: None)

3. Top dress with nitrogen, phosphorous, potassium (Timing/ frequency: None)

4. Mulch with straw and grass (Timing/ frequency: None)

5. Weed and protect plants as needed (Timing/ frequency: None)

6. Protect the riverbed areas throughout the growing season as they are prone to attacks by thieves and wild animals, mainly jackals and monkeys. However, note that the reported losses to date have been very minimal. (Timing/ frequency: None)

Maintenance inputs and costs (per ha)

Specify input	Unit	Quantity	Costs per Unit (USD)	Total costs per input (USD)	% of costs borne by land users
Labour					
Maintaining plots	ha	1.0	42.0	42.0	100.0
Equipment					
Sprayer, watering cans,spade	ha	1.0	28.0	28.0	25.0
Fertilizers and biocides					
Seeds, chemical fertilizer	ha	1.0	84.0	84.0	25.0

Construction material Plastic bags, mulching material	ha	1.0	11.0 11.0 50.0
Total costs for maintenance of the T		1.0	165.0
Total costs for maintenance of the Te	0,		165.0
	-		
NATURAL ENVIRONMEN	Γ		
Average annual rainfall < 250 mm 251-500 mm 501-750 mm 751-1,000 mm 1,001-1,500 mm 2,001-3,000 mm 3,001-4,000 mm > 4,000 mm	Agro-climatic zone ✓ humid sub-humid semi-arid arid	Specifications on climate Thermal climate class: subtrop	ics
<pre>Slope flat (0-2%) gentle (3-5%) moderate (6-10%) rolling (11-15%) hilly (16-30%) steep (31-60%) very steep (>60%)</pre>	Landforms plateau/plains ridges mountain slopes hill slopes footslopes valley floors	Altitude 0-100 m a.s.l. 101-500 m a.s.l. 501-1,000 m a.s.l. 1,001-1,500 m a.s.l. 1,501-2,000 m a.s.l. 2,001-2,500 m a.s.l. 3,001-4,000 m a.s.l. > 4,000 m a.s.l.	Technology is applied in convex situations concave situations not relevant
Soil depth very shallow (0-20 cm) shallow (21-50 cm) moderately deep (51-80 cm) deep (81-120 cm) very deep (> 120 cm)	Soil texture (topsoil) coarse/ light (sandy) medium (loamy, silty) fine/ heavy (clay) 	Soil texture (> 20 cm below surface) coarse/ light (sandy) medium (loamy, silty) fine/ heavy (clay)	Topsoil organic matter conter high (>3%) medium (1-3%) ✓ low (<1%)
Groundwater table on surface < 5 m ✓ 5-50 m > 50 m	Availability of surface water excess good medium poor/ none	 Water quality (untreated) good drinking water poor drinking water (treatment required) for agricultural use only (irrigation) unusable Water quality refers to: 	Is salinity a problem? Ja Nee Occurrence of flooding Ja Nee
Species diversity high medium Z low	Habitat diversity high medium low		
CHARACTERISTICS OF LA	ND USERS APPLYING THE	TECHNOLOGY	
Market orientation subsistence (self-supply) mixed (subsistence/ commercial) commercial/ market	Off-farm income less than 10% of all income 10-50% of all income ≥ 50% of all income	Relative level of wealth very poor poor average rich very rich	Level of mechanization manual work animal traction mechanized/ motorized
Sedentary or nomadic Sedentary Semi-nomadic Nomadic	Individuals or groups individual/ household groups/ community cooperative employee (company, government)	Gender women men	Age children youth middle-aged elderly
Area used per household < 0.5 ha 0.5-1 ha 1-2 ha 2-5 ha 5-15 ha 15-50 ha 50-100 ha 100-500 ha 500-1,000 ha 1,000-10,000 ha 	Scale small-scale medium-scale large-scale	Land ownership state company communal/village group individual, not titled individual, titled landless	Land use rights open access (unorganized) communal (organized) leased individual Water use rights open access (unorganized) communal (organized) leased individual

Access to services and infrastructure health education technical assistance employment (e.g. off-farm) markets energy roads and transport drinking water and sanitation financial services	poor✓goodpoor✓goodpoor✓goodpoor✓goodpoor✓goodpoor✓goodpoor✓goodpoor✓goodpoor✓goodpoor✓goodpoor✓goodpoor✓goodpoor✓goodpoor✓goodpoor✓good	
IMPACTS		
Socio-economic impacts farm income diversity of income sources	decreased increased increased increased	Provides vegetables for riverbed farming households
dependent on external agricultural inputs	increased 🖌 🗸 decreased	
Socio-cultural impacts food security/ self-sufficiency		
lood security, sen samelency	reduced improved	Riverbed crops can be exchanged for food grain; on average,this can provide an additional four month
conflict mitigation	worsened	Conflicts can arise when the land is being allocated and border conflict can arise between different groups
situation of socially and economically disadvantaged groups (gender, age, status, ehtnicity etc.) livelihood and human well-being	worsened Figure 1 improved	Additional income can be used to cover school fees and health services
	reduced improved	Provides alternative means of income as well as food security for landless and land-poor households
social status of local resource persons	decreased increased	· · · · · · · · · · · · · · · · · · ·
need for income usually met by migration and by off-farm daily wage labour	improved reduced	
Ecological impacts water quality		
	decreased	Excessive use of fertilizers may affect water quality and the use of pesticides in the case of massive pest invasions may affect the water quality as well
soil cover soil loss	reduced reduced reduced reduced	
flood impacts	increased	Minimize soil loss due to wind erosion
		Crops can be lost during floods, cold spells and hailstormes
Off-site impacts Local availability of fresh vegetables	reduced Figure 1 improved	
COST-BENEFIT ANALYSIS		
Benefits compared with establishme Short-term returns Long-term returns	very negative very positive very positive	
Benefits compared with maintenance		

Gradual climate change

Climate-related extremes (disasters) general (river) flood

not well at all 📕 🖌 📃 👘 very well

ADOPTION AND ADAPTATION

Percentage of land users in the area who have adopted the Technology

single cases/ experimental 1-10% 11-50% > 50%

Has the Technology been modified recently to adapt to changing conditions?

Ja

Nee

To which changing conditions?

climatic change/ extremes changing markets

labour availability (e.g. due to migration)

CONCLUSIONS AND LESSONS LEARNT

Strengths: land user's view

Strengths: compiler's or other key resource person's view

• Riverbed farming provides a new source of income for landless and land-poor households

How can they be sustained / enhanced? Continue to provide technical support through local resource persons. These persons can be supported through district-based instruments such as the Micro Enterprise Development Fund.

Local governing bodies such as the district development committees, municipalities, and village development committees, can support riverbed farming with their own funds; can support farmers with the land leasing process, can help to identify primary stakeholders, and can also help by promoting policies that are favourable towards riverbed farming.

• Riverbed farming has a very high cost-benefit ratio and a very low investment requirement.

How can they be sustained / enhanced? Continue to promote this technology among primary stakeholders.

 All services including the supply of quality seeds, tools, and materials are now processed through the local agrovets and agricultural extension is available through local resource persons. These are locally available and of high quality.

How can they be sustained / enhanced? Agrovets, local resource persons, and their associations may need further capacity building through different channels such as the Micro Enterprise Development Fund, and/or the District Agricultural Development Office

Weaknesses/ disadvantages/ risks: land user's viewhow to overcome

Weaknesses/ disadvantages/ risks: compiler's or other key resource person's viewhow to overcome

- Competition from riverbed products originating in India and a glut during the season Riverbed farmer groups need to improve their understanding of the value chain and their access to markets.
- Mineral fertilizer and biopesticides are now used to ensure a good harvest Promote sustainable soil management practices including the use of farmyard manure, urine collection, and bio-pesticides
- Land ownership of riverbed land is often contested Long term leasehold agreements need to be negotiated with land owners

Of all those who have adopted the Technology, how many have done so without receiving material incentives?

- 0-10%
- 11-50% 51-90%
- 91-100%

REFERENCES

Compiler Shreedip Sigdel Editors

Reviewer David Streiff Alexandra Gavilano

Last update: Junie 3, 2019

Date of documentation: Aug. 13, 2015

Resource persons

Shreedip Sigdel - SLM specialist Elam Plus - SLM specialist Hari Gurung - SLM specialist Juerg Merz - SLM specialist

Full description in the WOCAT database

https://qcat.wocat.net/af/wocat/technologies/view/technologies_1691/

Linked SLM data

Approaches: Land distribution and allocation for riverbed farming https://qcat.wocat.net/af/wocat/approaches/view/approaches_2534/

Documentation was faciliated by

Institution

- HELVETAS (Swiss Intercooperation)
- ICIMOD International Centre for Integrated Mountain Development (ICIMOD) Nepal

Project

• n.a.

Key references

• Riverbed farming manual and local resource person training modules. Kathmandu, Nepal, HELVETAS Swiss Intercooperation Nepal:

This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0 International

