

Mulberry plants after it's plants are given to the silkworm and cocoon. (Ekta Jayaswal (kavre))

Mulberry cultivation for silkworm (Nepal)

Resham kiro ko lagi kimbu khati

DESCRIPTION

The plantation of mulberry plants which are allowed to grow for the production of nutrients leaves for silkworm mulberry cultivation for silkworm.

After the plantation of mulberry plants. They are ready to be eaten by silkworm. Firstly, silkworm eggs must be stay between 25 to 31 "C in tray or petric dish. In this area silkworm are brought from silkworm industry of khopasi. The larvae must be transfer to clean tray with freash food. A time came in larval stage when larvae eats huge amount of mulberry and grow more than 5cm long. After enough eating, larvae raise their heads as it shows sign for cocoon formation. Then, the worm is kept in another circular bamboo which will make cocoon more uniform in slope and easier to collect silkworm by contracting secrets from an opening under its mouth a steady stream of liquid silk coated with sericine which darkens on exposure. It takes 25 days to form cocon.

Purpose of the Technology: The main purpose of planting mulberry plant is for producing silkworm to increases economic condition of farmer.

Establishment / maintenance activities and inputs: For over two years people have been implementing these technology. They took training from the khopasi silkworm institution. They have get external inputs. While getting training maintenance has been carried out when the plants are not grown enough. While producing the silkworm (larva to cocoon) maintenance is carried out as keeping them in clean environment without reaching another species around them.

Natural / human environment: The natural environment is tropical with temperature ranging from 20 to 25° C. The population density is sparse with the community relying heavily on agriculture.

LOCATION

Location: Kavre, Chamryang Besi, Nepal

No. of Technology sites analysed:

Geo-reference of selected sites • 85.569, 27.52651

Spread of the Technology:

In a permanently protected area?:

Date of implementation: more than 50 years ago (traditional)

Type of introduction

- through land users' innovation
- as part of a traditional system (> 50 years) during experiments/ research
- through projects/ external interventions

Mulberry plants after it's plants are given to the silkworm and cocoon. (Ekta Jayaswal (Kavre))

CLASSIFICATION OF THE TECHNOLOGY

Main purpose

- improve production
- reduce, prevent, restore land degradation
- conserve ecosystem
- protect a watershed/ downstream areas in combination with
- other Technologies
- preserve/ improve biodiversity
- reduce risk of disasters
- adapt to climate change/ extremes and its impacts mitigate climate change and its impacts
- create beneficial economic impact
- create beneficial social impact

Land use

Cropland • Annua

- Annual cropping: cereals maize, vegetables leafy vegetables (salads, cabbage, spinach, other), wheat, tomatoes
- Perennial (non-woody) cropping
- Number of growing seasons per year: 2

😓 Forest/ woodlands

(Semi-)natural forests/ woodlands. Management: Shifting cultivation

biological degradation - Bc: reduction of vegetation cover

Tree plantation, afforestation

Water supply

rainfed
 mixed rainfed-irrigated
 full irrigation

Degradation addressed

Purpose related to land degradation

prevent land degradation
 reduce land degradation
 restore/ rehabilitate severely degraded land
 adapt to land degradation
 not applicable

SLM group

 beekeeping, aquaculture, poultry, rabbit farming, silkworm farming, etc.

SLM measures

vegetative measures - V1: Tree and shrub cover

TECHNICAL DRAWING

Technical specifications

ESTABLISHMENT AND MAINTENANCE: ACTIVITIES, INPUTS AND COSTS

Calculation of inputs and costs

- Costs are calculated:
- Currency used for cost calculation: USD
- Exchange rate (to USD): 1 USD = n.a
- Average wage cost of hired labour per day: n.a

Establishment activities

1. Bringing plant from khopasi (Timing/ frequency: Early june/july)

Maintenance activities

1. Bringing silkworm in time of production (Timing/ frequency: late april)

Most important factors affecting the costs

The most determinate factor affecting the cost is labour for bringing plants from khopasi, quality of mulberry leaves, quality of silkworm etc.

Maintenance inputs and costs				1		
Specify input	l	Unit	Quantity ^{Co}		Total costs per input (USD)	% of costs borne by land users
Equipment						
Bringing silkworm	silkworms	2000.0	0.01	20.0	100.0	
Total costs for maintenance of the	Technology				20.0	
Total costs for maintenance of the T	Fechnology in USD				20.0	
NATURAL ENVIRONMEN	IT					
Average annual rainfall < 250 mm 251-500 mm 501-750 mm 751-1,000 mm 1,001-1,500 mm 1,501-2,000 mm 2,001-3,000 mm 3,001-4,000 mm > 4,000 mm	Agro-climatic zone humid sub-humid semi-arid arid	Sp n.a	ecifications on cl	lim ate		
Slope flat (0-2%) gentle (3-5%) moderate (6-10%) rolling (11-15%) ✓ hilly (16-30%) ✓ steep (31-60%) very steep (>60%)	Landforms plateau/plains ridges mountain slopes hill slopes footslopes valley floors	Altitu 0 1 5 1 1 2 2 2 3 3	ude -100 m a.s.l. 01-500 m a.s.l. ,001-1,000 m a.s.l. ,001-1,500 m a.s ,501-2,000 m a.s ,501-3,000 m a.s ,001-4,000 m a.s.l.	.1. .1. .1. .1. .1.	Fechnology is a convex situal concave situa not relevant	pplied in tions ations
Soil depth very shallow (0-20 cm) ✓ shallow (21-50 cm) moderately deep (51-80 cm) deep (81-120 cm) very deep (> 120 cm)	Soil texture (topsoil) coarse/ light (sandy) medium (loamy, silty) fine/ heavy (clay)	Soil f	Soil texture (> 20 cm below surface) coarse/ light (sandy) medium (loamy, silty) fine/ heavy (clay)		Topsoil organic matter conte ✓ high (>3%) medium (1-3%) low (<1%)	
Groundwater table ✓ on surface < 5 m 5-50 m > 50 m	Availability of surface wate excess good medium poor/ none	er Wate	Water quality (untreated) good drinking water poor drinking water (treatment required) for agricultural use only (irrigation) ✓ unusable Water quality refers to:		Is salinity a problem? Ja Nee Occurrence of flooding Ja Nee	
Species diversity high medium low	Habitat diversity high medium low					
CHARACTERISTICS OF L	AND USERS APPLYING 1		NOLOGY			
Market orientation subsistence (self-supply) mixed (subsistence/ commercial) commercial/ market	ket orientation Off-farm income ubsistence (self-supply) less than 10% of all income nixed (subsistence/ 10-50% of all income commercial) > 50% of all income		Relative level of wealth very poor poor ✓ average rich very rich		 evel of mechan manual work animal tractimechanized/ 	nization on motorized
Sedentary or nomadic Sedentary Semi-nomadic Nomadic	Individuals or groups individual/ household groups/ community cooperative employee (company, government)	Gene v	der vomen nen		Age children youth middle-aged elderly	
Area used per household < 0.5 ha 0.5-1 ha ✓ 1-2 ha 2-5 ha 5-15 ha 15-50 ha	Scale Small-scale medium-scale large-scale	Lanc s c c g ii	l ownership tate ompany ommunal/ village roup ndividual, not titl ndividual, titled	ed	Land use rights open access communal (o leased individual Water use right	(unorganized) rganized) S

Wocat SLM Technologies

Mulberry cultivation for silkworm

Access to services and infrastructure

health	poor	~		good
education	poor	1		good
technical assistance	poor	~	ſ	good
employment (e.g. off-farm)	poor	~	ſ	good
drinking water and sanitation	poor	~	ſ	good
financial services	poor	1		good

IMPACTS

Socio-economic impacts		
Crop production	decreased 🖌 🖌 increased	
fodder production	decreased 🖌 🖌 increased	
wood production	decreased 🖌 🖌 increased	
farm income	decreased 🖌 🖌 increased	

Socio-cultural impacts

Ecological impacts

cultural opportunities (eg spiritual,			
aesthetic, others)	reduced	✓	improved
conflict mitigation	worsened	1	improved

Ecological impacts			
water quality	decreased	1	increased
surface runoff	increased	1	decreased
soil moisture	decreased	1	increased
soil cover	reduced	1	improved
soil loss	increased	1	decreased
nutrient cycling/ recharge	decreased	1	increased
soil organic matter/ below ground C	decreased	1	increased
hazard towards adverse events	improved	1	reduced

Off-site impacts

•		_		_	
damage on neighbours' fields	increased		1		reduced

COST-BENEFIT ANALYSIS

Benefits compared with establishme	nt costs		
Long-term returns	very negative	1	very positive

Benefits compared with maintenance costs Short-term returns very negative very positive

CLIMATE CHANGE

Gradual climate change

annual temperature increase

not well at all 🚽 🖌 📕 very well

ADOPTION AND ADAPTATION

Percentage of land users in the area who have adopted the Technology

single	cases/	experimental	

- 1-10% 11-50%
- > 50%

Of all those who have adopted the Technology, how many have done so without receiving material incentives?

0-10%
11-50%
51-90%

91-100%

Has the Technology been modified recently to adapt to changing conditions?

Ja	
Nee	

To which changing conditions?

- climatic change/ extremes
- changing markets
- labour availability (e.g. due to migration)

CONCLUSIONS AND LESSONS LEARNT

Strengths: land user's view

- Provide the facility of fodders for animals
- Waste product comes from the use as food for animals
- Increase water resources
- water product also serves as a good fertilizer
- Improve little economic status

Strengths: compiler's or other key resource person's view

- Increase the economic status of farmer
- Provided the facilities
- Decrease soil erosion
- wastes could we good fertilizer

REFERENCES

Compiler Sabita Aryal Editors

Date of documentation: Jan. 8, 2015

Resource persons

Sabita Aryal - SLM specialist Ekta Jayaswal - SLM specialist Gangalal Singtang - land user

Full description in the WOCAT database https://qcat.wocat.net/af/wocat/technologies/view/technologies_1226/

Linked SLM data n.a.

Documentation was faciliated by

Institution

- Kathmandu University (KU) Nepal
- Project
- n.a.

This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0 International

Weaknesses/ disadvantages/ risks: land user's viewhow to overcome

Weaknesses/ disadvantages/ risks: compiler's or other key resource person's viewhow to overcome

- waste of time if larvae of silkworm cannot grow properly while keeping larva place should properly clean.
- Time taking process as cocoon formation takes around 25 days keep larva away from other inscers. It can be done covering the disk with net.

Reviewer David Streiff Alexandra Gavilano

Last update: Sept. 5, 2019

© († § ()