

One of the municipalities, near the Poznań city border. (www.geoportal.gov.pl)

Ex-post and ex-ante soil sealing maps (Poland)

Mapy procesu zasklepiania gleb (Polish)

DESCRIPTION

Ex-post and ex-ante soil sealing maps

The technology utilizes soil agricultural maps and provides information on quality of sealed soils.

It involves cellular automata software to build the model of land use change and produce the forecasts for various soil protection scenarios. Spatial development of the functional areas. These are mostly areas of soil protection for food

Spatial development of the functional areas. These are mostly areas of soil protection for food production purposes. The delineation is based on land productivity information (present on soil-agricultural maps), distribution of high nature value areas, need for establishment of "green rings" around the bigger cities.

The maps will be sent to the municipal authorities, with a scientific comment on the problem. The technology enables determining the scale of the soil sealing threat in the province, also what is the soil quality class of the area of interest. In the municipalities with the greatest soil sealing problem and with perspective to expand in the future, there is a need for new legal regulations to force soil protection in local spatial plans. The regional spatial planning offices should become a coordinator for the local spatial planning offices, to raise the knowledge about how to use soil digital maps in spatial planning, especially in the case of protecting the soil against soil sealing process. For the municipalities, large scale maps are produced, which contain results of soil sealing forecasting model.

Land use maps of at least 10-meter resolution are produced for two historical periods through classification of the satellite images and using available local land use information. The information on land use change is superimposed on maps characterizing soil quality in order to detect to what extend the urbanization took place on valuable soils. The new sealed area, reflecting the built up sprawl of at least last 15 years, consists with expansion of the following land use classes: continuous residential area, commercial/industrial area and transport facilities. The soils under these new land use types fully lost their environmental functions. In the soil sealing forecasts the Cellular Automata-based Metronamica model is used. The software was developed and provided by the Research Institute from Knowledge Systems (RIKS) from Maastricht, The Netherlands. The software utilizes cellular automata model to spatially distribute areas of particular land use classes with assumption that the neighborhood of a cell (surrounding cells) influences the transition of this cell into other land use class in the next time step. The method utilizes land use maps and soil quality maps.

LOCATION

Location: Poznań, Poland/Great Poland province, Poland

No. of Technology sites analysed:

Geo-reference of selected sites • 16.9, 52.399

Spread of the Technology: evenly spread over an area (199.0 km²)

In a permanently protected area?:

Date of implementation: less than 10 years ago (recently)

Type of introduction

- through land users' innovation
- as part of a traditional system (> 50 years)
- during experiments/ research
- through projects/ external interventions

CLASSIFICATION OF THE TECHNOLOGY

Main purpose

- improve production
- reduce, prevent, restore land degradation
- conserve ecosystem
- protect a watershed/ downstream areas in combination with
- other Technologies preserve/ improve biodiversity
- Wocat SLM Technologies

Land use

Cropland
Annual cropping
Number of growing seasons per year: 1

a n ✓ c ✓ c

reduce risk of disasters adapt to climate change/ extremes and its impacts mitigate climate change and its impacts create beneficial economic impact create beneficial social impact

Create and spread knowledge

Purpose related to land degradation

prevent land degradationreduce land degradation

reduce land degradation restore/ rehabilitate severely degraded land adapt to land degradation not applicable

SLM group

- ecosystem-based disaster risk reduction
- Creating and sharing knowledge

SLM mea

management measures - M2: Change of management/ intensity level

TECHNICAL DRAWING

Technical specifications

This is a schema for soil sealing maps developement.

Technical knowledge required for land users: moderate (Developers) Technical knowledge required for Administration: high Technical knowledge required for Researchers: high

Main technical functions: improvement of surface structure (crusting, sealing), increase of infiltration, spatial arrangement and diversification of land use

Secondary technical functions: improvement of water quality, buffering / filtering water

Change of land use type: Limited conversion of agricultural land into urban purposes.

Change of land use practices / intensity level: Steering new constructions to soils with less functions. Limited sealing of high quality soils.

ESTABLISHMENT AND MAINTENANCE: ACTIVITIES, INPUTS AND COSTS

Calculation of inputs and costs

- Costs are calculated:
- Currency used for cost calculation: **n.a.**
- Exchange rate (to USD): 1 USD = n.a
- Average wage cost of hired labour per day: n.a

Establishment activities

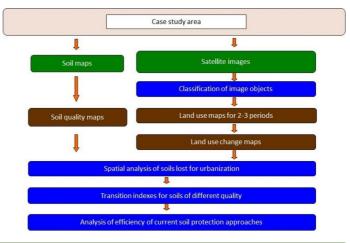
n.a.

Maintenance activities

n.a.

NATURAL ENVIRONMENT

Average annual rainfall



Agro-climatic zone

sub-humid
semi-arid
arid

Most important factors affecting the costs n.a.

Specifications on climate Thermal climate class: temperate

Grazing land

Water supply rainfed mixed rainfed

mixed rainfed-irrigated full irrigation

Degradation addressed

physical soil deterioration - Pu: loss of bio-productive function due to other activities

SLM measures

Slope ✓ flat (0-2%) gentle (3-5%) moderate (6-10%) rolling (11-15%) hilly (16-30%) steep (31-60%) very steep (>60%)	Landforms plateau/plains ridges mountain slopes hill slopes footslopes valley floors	Altitude ✓ 0-100 m a.s.l. 101-500 m a.s.l. 501-1,000 m a.s.l. 1,001-1,500 m a.s.l. 1,501-2,000 m a.s.l. 2,001-2,500 m a.s.l. 2,501-3,000 m a.s.l. 3,001-4,000 m a.s.l. > 4,000 m a.s.l.	Technology is applied in convex situations concave situations rot relevant
Soil depth very shallow (0-20 cm) shallow (21-50 cm) moderately deep (51-80 cm) deep (81-120 cm) very deep (> 120 cm)	Soil texture (topsoil) coarse/ light (sandy) ✓ medium (loamy, silty) fine/ heavy (clay)	Soil texture (> 20 cm below surface) coarse/ light (sandy) medium (loamy, silty) fine/ heavy (clay)	Topsoil organic matter content high (>3%) ✓ medium (1-3%) low (<1%)
Groundwater table on surface ✓ < 5 m 5-50 m > 50 m	Availability of surface water excess good medium poor/ none	Water quality (untreated) good drinking water poor drinking water (treatment required) for agricultural use only (irrigation) unusable Water quality refers to:	Is salinity a problem? Ja Nee Occurrence of flooding Ja Nee
Species diversity high medium low	Habitat diversity high medium low		
CHARACTERISTICS OF LA	AND USERS APPLYING THE	TECHNOLOGY	
Market orientation subsistence (self-supply) mixed (subsistence/ commercial) commercial/ market	Off-farm income less than 10% of all income 10-50% of all income > 50% of all income	Relative level of wealth very poor poor average rich very rich	Level of mechanization manual work animal traction mechanized/ motorized
Sedentary or nomadic Sedentary Semi-nomadic Nomadic	Individuals or groups individual/ household groups/ community cooperative employee (company, government)	Gender women men	Age children youth middle-aged elderly
Area used per household < 0.5 ha 0.5-1 ha 1-2 ha 2-5 ha 5-15 ha ✓ 15-50 ha 50-100 ha 100-500 ha 500-1,000 ha 1,000-10,000 ha > 10,000 ha	Scale small-scale medium-scale ✓ large-scale	Land ownership state company communal/ village group individual, not titled ✓ individual, titled	Land use rights open access (unorganized) communal (organized) leased ✓ individual Water use rights open access (unorganized) communal (organized) leased individual
Access to services and infrastruc health education technical assistance employment (e.g. off-farm) markets energy roads and transport drinking water and sanitation financial services	cture		
IMPACTS			
Socio-economic impacts			
	decreased 🖌 🖌 in	creased	

comparing to baseline scenario

production area (new land under cultivation/ use)	decreased	comparing to baseline scenario
irrigation water availability		companing to paseline scenario
inigation watch availability	decreased 🖌 🖌 increased	comparing to baseline scenario
irrigation water quality		comparing to baseline scenario
ingution watch quarty	decreased 🖌 🖌 🖌 increased	comparing to baseline scenario
Socio-cultural impacts		
food security/ self-sufficiency		
	reduced / improved	comparing to baseline scenario
recreational opportunities		
	reduced 🖌 🖌 improved	comparing to baseline scenario
SLM/ land degradation knowledge	reduced v improved	
Ecological impacts		
surface runoff	increased 🖌 🖌 decreased	
soil loss	increased decreased	
soil crusting/ sealing	increased reduced	
soil compaction	increased reduced	
habitat diversity	decreased 🖌 🖌 increased	
Off-site impacts		
water availability (groundwater, springs)	decreased	
downstream flooding (undesired)	increased reduced	
COST-BENEFIT ANALYSIS		

Benefits compared with establishment costs

Benefits compared with maintenance costs

CLIMATE CHANGE

ADOPTION AND ADAPTATION

Percentage of land users in the area who have adopted the Technology

single cases/ experimental

- 1-10% 11-50%
- > 50%

Has the Technology been modified recently to adapt to changing conditions?

Ja

Nee

To which changing conditions?

- climatic change/ extremes
- changing markets
- labour availability (e.g. due to migration)

CONCLUSIONS AND LESSONS LEARNT

Strengths: land user's view

Strengths: compiler's or other key resource person's view

- Analysis of various scenarios possible
- Decisions in spatial planning based on empirical data in spatial format

Of all those who have adopted the Technology, how many have done so without receiving material incentives?

0-10%
11-50%
51-90%
91-100%

Weaknesses/ disadvantages/ risks: land user's viewhow to overcome

Weaknesses/ disadvantages/ risks: compiler's or other key resource person's viewhow to overcome

- Lack of regulations forcing use of the technology Pressenting examples of implementation in order to encourage to apply at local level strategies
- Potential errors in forecasts Improving the data quality and model effectiveness.

REFERENCES			
Compiler Tomasz Miturski	Editors	Reviewer Fabian Ottiger Alexandra Gavilano	
Date of documentation: Julie 7, 20	015 Last	update : Junie 14, 2019	
Resource persons Tomasz Miturski - SLM specialist			
Full description in the WOCAT d https://qcat.wocat.net/af/wocat/te	atabase echnologies/view/technologies_1716/		
Linked SLM data Approaches: The prevention of soil	sealing https://qcat.wocat.net/af/wocat/app	roaches/view/approaches_2540/	
Documentation was faciliated by	у		
Project	ant Cultivation (Institute of Soil Science and P egradation of soils in Europe through Land Ca		
This work is licensed under (Creative Commons Attribution-NonC	ommercial-ShareaAlike 4.0	

This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0 International

© († § ()