Mulching with grass close up image (Sebastian Ruppen)

Mulching in rainfed vineyards on terraces in the loess hill zone (Tajikistan)

Mulcha Sino

Description

This technology consists of vineyards plots that are mulched with grass and established on terraced land in the loess hills of Tajikistan.

On the terrain of the Tajik Soil Institut's research station in Karsang, Faizabad District, Tajikistan, a vineyard was established on forward sloping terraces with about 12° inclination on land formerly used as extensive pastures. This technology dates back to the times of the Soviet Union in 1968. Bulldozers were used to establish the terraces.

Before the planting of vines the soil was ploughed. Local vine sorts were used for the plantation and intercropping is done with wheat and fodder crops. About 1300 vine seedlings were planted per hectare.

Purpose of the Technology: Mulching treatment with grass was initiated to increase soil moisture in the soil, improve soil quality such as soil organic matter and other elements and protect soil from erosion by water and wind.

Establishment / maintenance activities and inputs: Mulching with grass was set up by the Tajik Soil Institute and but has been maintained by the farmers who lease the land. Mulching with grass is relatively easy but can be very challenging; depending on the availability of resources. First, plots between the vineyard rows were ploughed by using animal power, in most cases horses. Natural grasses were cut from the property of the research station and applied as a mulch in between plots within the designated vineyard plots. Since then the experiment has been maintained by the farmers and over the last ten years layer of mulch with grass has been growing and building up the top soil layer. This layer of mulch prevents rainwater from eroding the top soil, improves soil organic carbon, provides shade to plant roots, and most importantly keeps soil moisture moderately in hot summer months, which is very essential in these rainfed areas.

Natural / human environment: The terraces have greatly helped to reduced soil erosion and the vines supported this effect in further stabilising the soil. Soil humidity has improved through increased soil moisture and reduced evaporation due to mulching throughout the year. As the vineyard was established on pasture land, a disadvantage is the reduced grazing land area. The disadvantage of mulching is that no inter cropping between the vines can take place for several years.

In summer of 2011, WOCAT questionnary was used to analyze and evaluate current conditions of the vineyard mulching treatment. At the same time proper soil samples were taken from the plots with mulch and control plots in 0-15 and 15-30cm for further comparison for soil organic carbon (SOC). All together 240 soil samples were taken from eight different plots and each have been analyzed for soil SOC content.

From this study it was revealed that plots with mulch has significantly higher SOC content than control plots. In average, plots with mulch consisted of 1.3% SOC and control plots in average contained 0.4% SOC within the 0-15cm depths. Average SOC content for plots with mulch and control plots were observed but there were no significant difference in 30cm depth, both contained 0.4-0.5% of SOC.

Location

Location: Faizabad, Javonon, Karsang, RRS, Tajikistan

No. of Technology sites analysed:

Geo-reference of selected sites
  • 69.3775, 38.5853

Spread of the Technology: evenly spread over an area (approx. < 0.1 km2 (10 ha))

In a permanently protected area?:

Date of implementation: less than 10 years ago (recently)

Type of introduction
Typical view of vineyard (Qobiljon Shokirov)

Classification of the Technology

Main purpose
  • improve production
  • reduce, prevent, restore land degradation
  • conserve ecosystem
  • protect a watershed/ downstream areas – in combination with other Technologies
  • preserve/ improve biodiversity
  • reduce risk of disasters
  • adapt to climate change/ extremes and its impacts
  • mitigate climate change and its impacts
  • create beneficial economic impact
  • create beneficial social impact
Land use
Land use mixed within the same land unit: Ja - Agroforestry

  • Cropland
    • Perennial (non-woody) cropping
    • Tree and shrub cropping: grapes
    Number of growing seasons per year: 1
  • Grazing land
  • Forest/ woodlands
Water supply
  • rainfed
  • mixed rainfed-irrigated
  • full irrigation

Purpose related to land degradation
  • prevent land degradation
  • reduce land degradation
  • restore/ rehabilitate severely degraded land
  • adapt to land degradation
  • not applicable
Degradation addressed
  • soil erosion by water - Wt: loss of topsoil/ surface erosion, Wg: gully erosion/ gullying
SLM group
  • agroforestry
  • improved ground/ vegetation cover
  • cross-slope measure
SLM measures
  • agronomic measures - A1: Vegetation/ soil cover, A3: Soil surface treatment (A 3.1: No tillage)
  • vegetative measures - V1: Tree and shrub cover
  • structural measures - S1: Terraces
  • management measures - M1: Change of land use type

Technical drawing

Technical specifications
ocation: Faizabad, Tajikistan. RRS

Date: September, 2011

Technical knowledge required for field staff / advisors: moderate

Technical knowledge required for land users: moderate

Main technical functions: control of raindrop splash, control of dispersed runoff: impede / retard, improvement of ground cover, increase in organic matter, increase in nutrient availability (supply, recycling,…), increase / maintain water stored in soil

Secondary technical functions: control of dispersed runoff: retain / trap, improvement of surface structure (crusting, sealing), stabilisation of soil (eg by tree roots against land slides), increase of infiltration, water harvesting / increase water supply, increase of biomass (quantity)

Diversion ditch/ drainage
Material: earth

Mulching
Material/ species: grass
Quantity/ density: 15-20cm
Remarks: mulch layer thickness (15-20cm)

Breaking compacted topsoil
Material/ species: loosing of soil around vines, yearly

Zero tillage / no-till
Material/ species: zero tillage between the vines on the terraces

Aligned: -contour
Vegetative material: F : fruit trees / shrubs
Number of plants per (ha): 1300
Spacing between rows / strips / blocks (m): 3
Vertical interval within rows / strips / blocks (m): 2

Fruit trees / shrubs species: vineyards "rosevitaiti", improved local sorts

Terrace: bench level
Width of bunds/banks/others (m): 3

Vegetation is used for stabilisation of structures.
Author: Ibrohimov Huseyn

Establishment and maintenance: activities, inputs and costs

Calculation of inputs and costs
  • Costs are calculated:
  • Currency used for cost calculation: USD
  • Exchange rate (to USD): 1 USD = -2.13
  • Average wage cost of hired labour per day: 6.5
Most important factors affecting the costs
n.a.
Establishment activities
  1. Planting (Timing/ frequency: None)
  2. Terracing by bulldozer (Timing/ frequency: late autumn / early spring)
Establishment inputs and costs
Specify input Unit Quantity Costs per Unit (USD) Total costs per input (USD) % of costs borne by land users
Labour
Planting Persons/day 13.0 6.5 84.5
Terracing by bulldozer hours 16.0 2.81222 45.0
Equipment
Bulldozer rent hours 16.0 0.8125 13.0
Plant material
Seedlings Seeds/ha 1300.0 0.5 650.0
Fertilizers and biocides
Fertilizer kg 5.0 1.0 5.0
Construction material
Grass tons 1.0 165.0 165.0
Total costs for establishment of the Technology 962.5
Total costs for establishment of the Technology in USD -451.88
Maintenance activities
  1. cutting of grass (Timing/ frequency: spring/once a year)
  2. soil loosening around the trees (Timing/ frequency: None)
  3. Mulching (Timing/ frequency: spring (end of April/beginning of May))
  4. Cutting the grass (Timing/ frequency: 1)
  5. Protecting the vineyard from animals (Timing/ frequency: autumn to spring)
Maintenance inputs and costs
Specify input Unit Quantity Costs per Unit (USD) Total costs per input (USD) % of costs borne by land users
Labour
Cutting of grass Persons/day 5.0 6.5 32.5
Soil loosening Persons/day 2.0 6.5 13.0
Cutting the grass 2nd time Persons/day 4.0 6.5 26.0
Equipment
Mulching tons 1.0 86.0 86.0
Scissors ha 1.0 60.0 60.0
Total costs for maintenance of the Technology 217.5
Total costs for maintenance of the Technology in USD -102.11

Natural environment

Average annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Agro-climatic zone
  • humid
  • sub-humid
  • semi-arid
  • arid
Specifications on climate
Thermal climate class: temperate
Slope
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitude
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
Technology is applied in
  • convex situations
  • concave situations
  • not relevant
Soil depth
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil)
  • coarse/ light (sandy)
  • medium (loamy, silty)
  • fine/ heavy (clay)
Soil texture (> 20 cm below surface)
  • coarse/ light (sandy)
  • medium (loamy, silty)
  • fine/ heavy (clay)
Topsoil organic matter content
  • high (>3%)
  • medium (1-3%)
  • low (<1%)
Groundwater table
  • on surface
  • < 5 m
  • 5-50 m
  • > 50 m
Availability of surface water
  • excess
  • good
  • medium
  • poor/ none
Water quality (untreated)
  • good drinking water
  • poor drinking water (treatment required)
  • for agricultural use only (irrigation)
  • unusable
Water quality refers to:
Is salinity a problem?
  • Ja
  • Nee

Occurrence of flooding
  • Ja
  • Nee
Species diversity
  • high
  • medium
  • low
Habitat diversity
  • high
  • medium
  • low

Characteristics of land users applying the Technology

Market orientation
  • subsistence (self-supply)
  • mixed (subsistence/ commercial)
  • commercial/ market
Off-farm income
  • less than 10% of all income
  • 10-50% of all income
  • > 50% of all income
Relative level of wealth
  • very poor
  • poor
  • average
  • rich
  • very rich
Level of mechanization
  • manual work
  • animal traction
  • mechanized/ motorized
Sedentary or nomadic
  • Sedentary
  • Semi-nomadic
  • Nomadic
Individuals or groups
  • individual/ household
  • groups/ community
  • cooperative
  • employee (company, government)
Gender
  • women
  • men
Age
  • children
  • youth
  • middle-aged
  • elderly
Area used per household
  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Scale
  • small-scale
  • medium-scale
  • large-scale
Land ownership
  • state
  • company
  • communal/ village
  • group
  • individual, not titled
  • individual, titled
Land use rights
  • open access (unorganized)
  • communal (organized)
  • leased
  • individual
  • research
Water use rights
  • open access (unorganized)
  • communal (organized)
  • leased
  • individual
  • research
Access to services and infrastructure
health

poor
x
good
education

poor
x
good
technical assistance

poor
x
good
employment (e.g. off-farm)

poor
x
good
markets

poor
x
good
energy

poor
x
good
roads and transport

poor
x
good
drinking water and sanitation

poor
x
good
financial services

poor
x
good

Impacts

Socio-economic impacts
Crop production
decreased
x
increased

fodder production
decreased
x
increased

Socio-cultural impacts
Ecological impacts
surface runoff
increased
x
decreased

excess water drainage
reduced
x
improved

evaporation
increased
x
decreased

soil moisture
decreased
x
increased

soil cover
reduced
x
improved

soil loss
increased
x
decreased

soil crusting/ sealing
increased
x
reduced

soil compaction
increased
x
reduced

soil organic matter/ below ground C
decreased
x
increased

beneficial species (predators, earthworms, pollinators)
decreased
x
increased


earthworms

Hazards towards adverse events
improved
x
reduced


drought

Off-site impacts

Cost-benefit analysis

Benefits compared with establishment costs
Short-term returns
very negative
x
very positive

Long-term returns
very negative
x
very positive

Benefits compared with maintenance costs
Short-term returns
very negative
x
very positive

Long-term returns
very negative
x
very positive

Farmers have noted that usually change can be seen within few years after the technology has established.

Climate change

Gradual climate change
annual temperature increase

not well at all
x
very well
Climate-related extremes (disasters)
local rainstorm

not well at all
x
very well
local windstorm

not well at all
x
very well
drought

not well at all
x
very well
general (river) flood

not well at all
x
very well

Adoption and adaptation

Percentage of land users in the area who have adopted the Technology
  • single cases/ experimental
  • 1-10%
  • 11-50%
  • > 50%
Of all those who have adopted the Technology, how many have done so without receiving material incentives?
  • 0-10%
  • 11-50%
  • 51-90%
  • 91-100%
Number of households and/ or area covered
10 households (3 percent of stated area)
Has the Technology been modified recently to adapt to changing conditions?
  • Ja
  • Nee
To which changing conditions?
  • climatic change/ extremes
  • changing markets
  • labour availability (e.g. due to migration)

Conclusions and lessons learnt

Strengths: land user's view
  • Vineyards are adapted to climate and give consistently good harvest.
  • Between the rows there is an additional harvest thanks to intercropping.
Strengths: compiler’s or other key resource person’s view
  • Efficient soil protection.
  • Very practical and easily adaptable in villages, where grass is available.

    How can they be sustained / enhanced? At the same time grass can become deficit in villages, because of high number of livestock. In that cases small scale mulching is recommended with rotation system.
Weaknesses/ disadvantages/ risks: land user's viewhow to overcome
Weaknesses/ disadvantages/ risks: compiler’s or other key resource person’s viewhow to overcome
  • Technology is very practical but so far it has not been taken seriously by the farmers. Probably, few educational days for knowledge sharing would be very helpful.
  • Grass might be available for small scale mulching but usually not for a big scale, because everyone in the region has high number of livestock and automatically grass is used as fodder for animals. Maybe mulching can be applied around the trees and not so much for covering entire plots.

References

Compiler
  • Qobiljon Shokirov
Editors
Reviewer
  • David Streiff
  • Alexandra Gavilano
Date of documentation: April 8, 2011
Last update: Aug. 14, 2019
Resource persons
Full description in the WOCAT database
Linked SLM data
Documentation was faciliated by
Institution Project
This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0 International