This is an outdated, inactive version of this case. Go to the current version.
Technologies
Inactive

Agroforestry system (intercropping beans/maize) with contour ditches, strips of Napier grass, manure and organic fertilizers. [Kenya]

technologies_1146 - Kenya

Completeness: 78%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:

Nyamu Joseph

WRUA Sabasaba

Kenya

1.3 Conditions regarding the use of data documented through WOCAT

When were the data compiled (in the field)?

02/11/2012

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Ja

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

The technology is a combination of agricultural (e.g. intercropping, manure/compost/mulching), vegetative (e.g. Napier grass strips, trees planting) and structural (e.g. ditches) measures which aim to maximise the overall land yield in a sustainable manner (e.g. reducing soil erosion and increasing soil quality).

2.2 Detailed description of the Technology

Description:

The Agroforestry system combines trees plantation (Bananas, Grevillea and Avocados) for fruits and timber collection with cereal crop, maize (Zea mays). Indeed, in order to increase yields, strip intercropping is practiced: cereal crop (maize) is grown in association with pulse (food legumes): beans. Instead of using expensive commercial fertilizers, beans could facilitate maize growth due to the possible transfer of N during growth or after incorporation of the legume biomass, during the growth period of the cereal (Sangakkara et al., 2003). Furthermore, soil quality (e.g. soil structure) is improved because of the increased amount of humus and organic matter and a better soil cover helps in preventing splash erosion and increase soil moisture content and therefore fertility. Indeed, beans have a beneficial impact for weed control (probably due to the shadow effects) and soil moisture content (Worfswinkel, undated; Odhiambo and Ariga, 2001). Planting different crops helps to diversify production and family food supply. Concerning SWC, hillside ditches have been created at the top of each 'terrace' and trees are also planted nearby and Cassava (a drought resistant plant) at the bottom. Manure/compost and organic fertilizers are supplied regularly both on maize/grass (twice a year) and Bananas (once), as good soil management practice. A higher level of organic matter in the soil indicates reduced bulk density, improved soil structure, aeration and higher water holding capacity (Olabode et al., 2007), which altogether improve the physical, chemical and biological properties of the soil (Haering and Evanylo, 2005). Bananas are planted in lines in the upper part of the land. The ditches, large 1m are excavated along the contour; they break slope into shorter segments 11 m long to intercept surface runoff. Ditches also help to prevent soil erosion and to avoid that nutrients and organic matter flow easily downwards into the river, instead they fall into the ditch. A live barrier of Napier grass is present above and below the edge of the five ditches, in two lines, to capture sediments and stabilize the structure, thus it is adequately protected. To conclude, a small area of the land is used to plant Napier grass only for fodder for grazing

Purpose of the Technology: Maize and beans are cultivated for home consumption while Avocados and Bananas are planted for economic (commercial) purposes. Fruits are sold out to the middle-men directly from the house (not at the market), to reduce costs (e.g. transport) and time. Avocados are sold at about 2.5/3 Ksh and Bananas at 200 Ksh. Grevillea trees are considered as saving, and sold out for timber production when the farmer is in need of cash, earning between 800 up to 1500 Ksh, depending on the size-lenght of the tree and the costs for cutting-transportation (e.g. machine operator). In general the selling of timber occurs per feet (running feet). ‘Whole” or standing tree is the preferred mode of selling trees from farms. Negotiation on sales is per tree ‘standing on farm’, with no processing or conversion. Buyers cut and cross cut, and carry timber from farms. Branches and slabs resulting from timber recoveries are left with the farmer depending on price negotiation; if the buyer carries these products then the price of the tree is adjusted upwards (Carsan and Holding , 2006; Holding et al., undated). Furthermore, the farmer underlined how 'bad prunings' at the top of the trees cause holes inside the trunks and thus a higher risk of fungi attacks and other diseases. The majority of the trees are planted along the boundaries of the land, for demarcation and only few are 'dispersed' on the cropland, to avoid excess of shadow to the cereal crop

Establishment / maintenance activities and inputs: High initial input to construct ditches and planting crop; manure also requires regular work: feeding cows and collect droppings and distribute them twice during the year, also over Napier grass. Dry planting is the preferred practice and the seeds are soaked the night before planting; this practice is advisable especially when the growing period is very short (Schmidt et al., 1983); organic fertilizers are applied over maize after 1 week and during the growing period (after about 18 days). Further maintenance is necessary after every rainy season to remove the sediments accumulated into the ditch and for pruning Grevillea, every three seasons. As mentioned above, pruning requires skills and knowledge to avoid plant diseases and labour is expensive because it is high risk work. The farmer trees plantation account for: 15 Avocados (from 4 seedlings), 100 Bananas (from cutting new suckers) and 50 Grevillea trees

Natural / human environment: The area is characterized by rolling-hilly slope and highly exposed to erosion and land degradation: planting trees protect the soil from nutrients leaching and create a litter which reduces evaporation during dry seasons. Concerning the variety of the trees, (e.g. Avocado) the farmer by grafting with better quality branches, improve the quality of the stock trees with certified variesties: out of 4 seedlings of Avocado (10 Ksh each), he has now 15 seedlings of the better (certified) variety called HASS, which performs well at 800-2100 m asl with well distributed annual rainfall of 1000-1200 mm (Youth Agro-environmental initiative website)

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Kenya

Region/ State/ Province:

Central

Further specification of location:

Muthithi location, Kagurumo sublocation

2.6 Date of implementation

If precise year is not known, indicate approximate date:
  • less than 10 years ago (recently)

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • through land users' innovation
Comments (type of project, etc.):

Since the year 2000 the farmer adopted SWC practices in respond to the prolonged degraded situation of the land and its low yields.

3. Classification of the SLM Technology

3.2 Current land use type(s) where the Technology is applied

Grazing land

Grazing land

Intensive grazing/ fodder production:
  • Cut-and-carry/ zero grazing
Main animal species and products:

Cut-and-carry/ zero grazing: Fodder is provided to animals (2 cows) confined to a stall.

Mixed (crops/ grazing/ trees), incl. agroforestry

Mixed (crops/ grazing/ trees), incl. agroforestry

  • Agroforestry
Comments:

Major land use problems (compiler’s opinion): Sheet erosion with consequent nutrient leaching which could drain into the river.

Major land use problems (land users’ perception): Loss of soil fertility.

Grazingland comments: Fig. 10 Annex 3

Plantation forestry: Yes

Type of grazing system comments: Fig. 10 Annex 3

3.3 Further information about land use

Water supply for the land on which the Technology is applied:
  • rainfed
Number of growing seasons per year:
  • 2
Specify:

Longest growing period in days: 122Longest growing period from month to month: from about March to JuneSecond longest growing period in days: 61Second longest growing period from month to month: from about October to November

Livestock density (if relevant):

< 1 LU/km2

3.5 Spread of the Technology

Comments:

Total area covered by the SLM Technology is 0.008 m2.

GATWAMIKWA village

3.6 SLM measures comprising the Technology

agronomic measures

agronomic measures

  • A1: Vegetation/ soil cover
  • A2: Organic matter/ soil fertility
  • A3: Soil surface treatment
vegetative measures

vegetative measures

  • V1: Tree and shrub cover
  • V2: Grasses and perennial herbaceous plants
structural measures

structural measures

  • S4: Level ditches, pits
Comments:

Main measures: vegetative measures, structural measures

Secondary measures: agronomic measures

Type of agronomic measures: mulching, legume inter-planting, manure / compost / residues

Type of vegetative measures: aligned: -graded strips *<sup>3</sup>

3.7 Main types of land degradation addressed by the Technology

soil erosion by water

soil erosion by water

  • Wt: loss of topsoil/ surface erosion
chemical soil deterioration

chemical soil deterioration

  • Cn: fertility decline and reduced organic matter content (not caused by erosion)
water degradation

water degradation

  • Hp: decline of surface water quality
Comments:

Main causes of degradation: soil management (Poor soil management practices.), deforestation / removal of natural vegetation (incl. forest fires) (Poor vegetation cover, mainly herbaceous), disturbance of water cycle (infiltration / runoff) (Steep area (runoff)), Heavy / extreme rainfall (intensity/amounts) (Especially during wet seasons: March-June and October-November), education, access to knowledge and support services (Limited knowledge and training on SWC practices), governance / institutional (Limited or not adequate support)

Secondary causes of degradation: other natural causes (avalanches, volcanic eruptions, mud flows, highly susceptible natural resources, extreme topography, etc.) specify (From gentle to hilly slope), land tenure (Previous poor management SWC measures, especially in the upper areas)

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • prevent land degradation
  • reduce land degradation

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

Author:

D'Aietti Laura

4.2 Technical specifications/ explanations of technical drawing

Agroforestry system, which covers an area of 2 acre. The plot is bordered by Euphorbia tirucalli (Kariaria, milk bush) and Grevillea trees. The ditches are characterized by barriers of Napier grass. Intercropping of maize and beans: the distance from one line of maize and the other is of 1m.

Technical knowledge required for land users: moderate

Main technical functions: control of dispersed runoff: retain / trap, control of dispersed runoff: impede / retard, reduction of slope angle, reduction of slope length, improvement of ground cover, increase of infiltration, increase / maintain water stored in soil, water harvesting / increase water supply, sediment retention / trapping, sediment harvesting

Secondary technical functions: improvement of topsoil structure (compaction), stabilisation of soil (eg by tree roots against land slides), increase in organic matter, increase in nutrient availability (supply, recycling,…), improvement of water quality, buffering / filtering water, increase of biomass (quantity)

Mulching
Material/ species: Organic residues around Banana trees
Quantity/ density: undefined

Legume inter-planting
Quantity/ density: 4 kg

Manure / compost / residues
Material/ species: Leftovers and manure from two cows
Quantity/ density: 8 tonnes
Remarks: (for 1 year). The mix of organic material is left decomposed in a big hole.

Agronomic measure: organic fertilizers
Material/ species: Acid humic and N, P, K, microelements (Biodeposit Elixir: small bags (sachets) of 12 ml)
Remarks: 5 bags (1×12 litre), applied only on maize

Aligned: -graded strips
Vegetative material: T : trees / shrubs, F : fruit trees / shrubs, G : grass
Number of plants per (ha): 100 a strip
Vertical interval between rows / strips / blocks (m): few cm
Spacing between rows / strips / blocks (m): 1
Vertical interval within rows / strips / blocks (m): 0.25
Width within rows / strips / blocks (m): 1

Trees/ shrubs species: Grevillea (Grevillea robusta)

Fruit trees / shrubs species: Avocados (Persea americana- Mũkorobia), Bananas (Musa sapientum- Irigũ)

Grass species: Pennisetum pyramidalis (Napier grass or elephant grass)

Slope (which determines the spacing indicated above): 10%

If the original slope has changed as a result of the Technology, the slope today is (see figure below): 15%

Gradient along the rows / strips: 5-8%

Diversion ditch/ drainage
Spacing between structures (m): 1
Depth of ditches/pits/dams (m): 40/50
Width of ditches/pits/dams (m): 0.6/1

Slope (which determines the spacing indicated above): 5-8%

Lateral gradient along the structure: 15-20%

4.3 General information regarding the calculation of inputs and costs

other/ national currency (specify):

Kenyan Schellings

Indicate exchange rate from USD to local currency (if relevant): 1 USD =:

85.9

Indicate average wage cost of hired labour per day:

2.00

4.4 Establishment activities

Activity Type of measure Timing
1. Digging holes (1 feet ×1 feet) and planting trees (e.g. Grevillea trees along the boundaries and in line below the bunds of the ditches) Vegetative March (before rains), 1 year
2. Establishment of the ditches(digging ditch and creating soil bunds donward) and terracing. For 1 (in tot. are 5) : 2 p.d. * 1 day at 200 Ksh a day each. Structural 2 times per year

4.5 Costs and inputs needed for establishment

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour labour 1.0 7.0 7.0 100.0
Equipment Machine to grill/mill maize leftovers (chap cutter) 1.0 1164.0 1164.0 100.0
Equipment Generator 1.0 582.0 582.0 100.0
Other cows 2 1.0 349.0 349.0 100.0
Total costs for establishment of the Technology 2102.0
Comments:

Duration of establishment phase: 6 month(s)

4.6 Maintenance/ recurrent activities

Activity Type of measure Timing/ frequency
1. Prepare and apply fertilizers (organic) (See Annex 3, Fig. 9&comments) Agronomic Ferlizer application: after 1 week and 18 days, on maize only
2. Prepare manure+compost/mulch (Summary 2.1.2 QT4): Labour (to grill/mill leftovers - 300 Ksh for fuel- leftovers to prepare food for cows-3 person days) rest, the farmer by himself feed cows on daily basis (3 times in a day). Fuel: 1litre×1 day (×3 days) Agronomic compost/manure: 2 times/year in the field+grass; once on Bananas (where also added mulch)
3. Harvesting maize/beans (around Feb/March and Ag/Sept) Agronomic 2 times
4. Apply manure, mulch and compost (during March/April-long rains+Sept) just before the rains, when nutrients infiltrate into the soil with rainwater) (Summary 2.1.2 QT4) Agronomic Compost/manure: 2 times/year in the field+grass; once on Bananas (where also added mulch)
5. Tilling-soil (digging holes to plant maize/beans: 7 inches deep (17cm), spaced 1 feet (0.30 m) in contours: dry planting (before rains starts) Agronomic Twice a year, before rainy season (around March/Sept)
6. Digging planting holes and planting grass (2 persons × 3 days: 200 Ksh) Vegetative Every season (March/April and Sept/Oct)
7. Maintenance (weed control and cutting Napier grass and collecting fodder) (Fig. 11 Annex 3) Vegetative Every season (March/Sept); cutting Napier: 3/4 times in a season
8. Pruning branches and let them dry for firewood Vegetative Every 3 seasons (and when shortage of firewood)
9. Clearing the tree for selling timber (the price depends also of the use of the chainsaw (or saw) or not Vegetative When in need of cash (not regularly), not less than 5 years after planting
10. Repairing the ditches and remove excess of soil/leaves accumulated during the rainy season Structural After rains (every season)

4.7 Costs and inputs needed for maintenance/ recurrent activities (per year)

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour Labour 1.0 183.0 183.0
Equipment fuel 1.0 7.0 7.0
Plant material seeds 1.0 39.0 39.0 100.0
Plant material fertilizer 1.0 23.0 23.0 100.0
Total costs for maintenance of the Technology 252.0
Comments:

Machinery/ tools: the farmer prefers to use fork djembe then just the normal djembe (because it removes better the soil); panga and hoes., shovel, fork djembe, panga, saw, shovels, fork djembe

The costs has been computed during the period of the field visit and it include all the costs for the different structures: agronomic, vegetative and structural measures for 2 acre of land and summarized for 1 year period.

4.8 Most important factors affecting the costs

Describe the most determinate factors affecting the costs:

The main environmental constrain is water, in particular during dry season; An important cost is labour required to maintain all the SWC measures.

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Agro-climatic zone
  • sub-humid

Thermal climate class: subtropics. June, July and August

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • medium (loamy, silty)
Topsoil organic matter:
  • low (<1%)

5.4 Water availability and quality

Ground water table:

> 50 m

Availability of surface water:

medium

Water quality (untreated):

good drinking water

5.5 Biodiversity

Species diversity:
  • medium

5.6 Characteristics of land users applying the Technology

Off-farm income:
  • > 50% of all income
Relative level of wealth:
  • rich
Individuals or groups:
  • individual/ household
Level of mechanization:
  • manual work
Indicate other relevant characteristics of the land users:

Population density: 10-50 persons/km2

Annual population growth: 2% - 3%

Off-farm income specification: The farmer is rich because he owns 3 acre of land and livestock, assets (electricity) which are above the average standards of the community. The farmer is retired from an accountancy service position several years ago.

Market orientation of production system: subsistence (self-supply), subsistence (self-supply), commercial/ market

5.7 Average area of land owned or leased by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • individual, titled
Land use rights:
  • individual
Water use rights:
  • open access (unorganized)
Comments:

Water use rights depend on the use: open access for drinking and domestic uses.

5.9 Access to services and infrastructure

health:
  • poor
  • moderate
  • good
education:
  • poor
  • moderate
  • good
technical assistance:
  • poor
  • moderate
  • good
employment (e.g. off-farm):
  • poor
  • moderate
  • good
markets:
  • poor
  • moderate
  • good
energy:
  • poor
  • moderate
  • good
roads and transport:
  • poor
  • moderate
  • good
drinking water and sanitation:
  • poor
  • moderate
  • good
financial services:
  • poor
  • moderate
  • good

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

wood production

decreased
increased
Income and costs

expenses on agricultural inputs

increased
decreased

farm income

decreased
increased

Socio-cultural impacts

situation of socially and economically disadvantaged groups

worsened
improved

Ecological impacts

Water cycle/ runoff

surface runoff

increased
decreased

evaporation

increased
decreased
Soil

soil moisture

decreased
increased

soil cover

reduced
improved

soil loss

increased
decreased
Biodiversity: vegetation, animals

biomass/ above ground C

decreased
increased

6.2 Off-site impacts the Technology has shown

water availability

decreased
increased

buffering/ filtering capacity

reduced
improved

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Gradual climate change

Gradual climate change
Season Type of climatic change/ extreme How does the Technology cope with it?
annual temperature increase not known

Climate-related extremes (disasters)

Meteorological disasters
How does the Technology cope with it?
local rainstorm well
local windstorm well
Climatological disasters
How does the Technology cope with it?
drought not well
Hydrological disasters
How does the Technology cope with it?
general (river) flood well

Other climate-related consequences

Other climate-related consequences
How does the Technology cope with it?
reduced growing period not known

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

slightly negative

Long-term returns:

slightly positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

slightly positive

Long-term returns:

positive

6.5 Adoption of the Technology

Comments:

100% of land user families have adopted the Technology without any external material support

There is a moderate trend towards spontaneous adoption of the Technology

6.7 Strengths/ advantages/ opportunities of the Technology

Strengths/ advantages/ opportunities in the land user’s view
Better yields thanks to the intercropping measures taken.
Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
Intercropping is a commonly known practice which improves the overall conditions of the soil and provide better yields.

How can they be sustained / enhanced? Besides 'companion planting' there are plants which can be grown as forerunner plants (Storey, 2002). Depending also on the type of soil, attention could be given to some sps. which accumulate concentration of e.g. mineral accumulators, phosporus, potassium, calcium, silica and sulphur .
Another way to perhaps enhance the yields is relay intercropping. It is undersowing the next crop into the present crop, so that the present crop is a nurse crop and time and water is saved in the establishment of the following crop (Storey, 2002)
Green manure as a way to add organic nutrients and combine more than one green manure and rotate, both legume (e.g. cowpeas, soybeans, annual sweet clover, vetch, sesbania, and velvet beans ) and not legume (e.g. sudangrass, millet, sorghum, and buckwheat).
Agroforestry (Dispersed trees on cropland):
The technology is simple to adopt and improves a sustainable land management as well as diversification of income sources and food supply.

How can they be sustained / enhanced? It could be implemented by increasing the number of trees planted (e.g. along the boundaries) and with sps. characterised by deeper root systems, to avoid further water competition. More Avocadoe trees could increase the opportunities for the farmer to be part of a CBO (Community Based Organization) addressed to marketing of Avocadoes for oil production. This could help the farmer to earn more money and invest more in SWC implementation and new methods, in the long run.
The option of alley cropping (hedgerow
Intercropping) with leguminous plants e.g. Sesbanian sesban (Ramachandran Nair-ICRAF, 1993) could be considered as another option.
Napier grass has very good properties in holding soil; also for ditch stabilization and fodder production

How can they be sustained / enhanced? Other herbaceous vegetation could be also planted in the field:
e.g. Tithonia diversifolia (Mexican sunflower), an excellent (high quality-N, P, K concentration) green manure /nutrient release and medicinal plant, or could be also used as a major component of compost manure.
It is an annual weed that can be used for several purposes: fodders, poultry feed, fuel, compost, land demarcation, soil erosion, building materials, shelter for poultry. It is characterized by adaptability to different environment, rapid growth, fast rate of decomposition. Nevertheless, there is the need to ascertain the extent to which this weed sps. could be used for soil improvement and to determine the best mode of application of the weed sps., (Olabode et al., 2007, Olubukola et al., 2013) and the fact that is a invasive weed (with an aggressive growth) it requires a good knowledge in the land management and weed control.
The attention to certified varieties give also more value to the production itself and at market level: an increase of the bargaining power creates more opportunities for better income and chances to explore new and bigger markets, (e.g. Avocados for oil production ).

6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them

Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view How can they be overcome?
The technologies in place require maintenance and monitoring, especially during rainy seasons Eventually subsides or be part of a CBO's (Community Based Organizations) or SHG (Self Help Groups); Still the measures already in place could be improved: diversification of trees (e.g. indigenous) and trainings (e.g. pruning etc) could help the farmer in avoiding tree diseases and allocate more efficiently resources.
The amount of work required to carry out all the activities is too much.

7. References and links

7.2 References to available publications

Title, author, year, ISBN:

Holding C., Carsan S., Njuguna P., 2004. Smallholder Timber Marketing: A Kenyan Experience. FAO/ICRAF/GoK multi-stakeholder programme. International Workshop on small holder timber production.

Title, author, year, ISBN:

Odhiambo G.D. and Ariga E. S., 2001. Effect of intercropping maize and beans on Striga incidence and grain yield. Seventh Eastern and Southern Africa Regional Maize Conference. 11th -15 th February, 2001. pp. 183-186.

Title, author, year, ISBN:

Olabode O.S., Sola O., Akanbi W.B., Adesina G.O., Babajide P.A., 2007. Evaluation of Tithonia diversifolia (Hemsl.) A Gray for Soil Improvement. World Journal of Agricultural Sciences 3 (4): 503-507.

Available from where? Costs?

http://www.idosi.org/wjas/wjas3(4)/15.pdf

Title, author, year, ISBN:

Olubukola S. A., Aderemi Ojo Ezekiel-Adewoyin O., Dorcas Tinuke D., Akintoye Henry, 2010. Comparing the use of Tithonia diversifolia and Compost as soil amendments for growth and yield of Celosia argentea. New York Science Journal 3 (6).

Available from where? Costs?

http://www.sciencepub.net/newyork/ny0306/20_2680_ny0306_133_138.pdf

Title, author, year, ISBN:

Ramachandran Nair P. K., 1993. An Introduction to Agroforestry- ICRAF.

Available from where? Costs?

http://www.worldagroforestry.org/units/library/books/PDFs/32_An_introduction_to_agroforestry.pdf?n=161

Title, author, year, ISBN:

Sanchez M. A., 2012. Food vs wood: dynamic choices for Kenyan smallholders. A plan B research paper. Master of Science. Michigan State University.

Available from where? Costs?

http://ageconsearch.umn.edu/bitstream/134024/2/PeraltaSanchezPlanB.pdf

Title, author, year, ISBN:

Sangakkara U.R., Richner W., Schneider M. K., Stamp P., 2003. Impact of intercropping beans (Phaseolus vulgaris L.) and sunhemp (Crotalaria juncea L.) on growth yields and Nitrogen uptake of maize (Zea mays L.) grown in the humid tropics during the minor rainy season. Maydica 48: 233-238

Available from where? Costs?

http://www.maydica.org/articles/48_233.pdf

Title, author, year, ISBN:

Schmidt H., Swoboda R., Ralph Jätzold R., 1983. Farm Management Handbook of Kenya. Natural Conditions and Farm Management Information. Vol. 2.Part B: Central Kenya

Available from where? Costs?

http://www2.gtz.de/dokumente/bib/07-1284.pdf

Title, author, year, ISBN:

Smith D. M., Jackson N. A., Roberts J.M. and Ong C.K., 1999. Root distributions in a Grevillea robusta-maize agroforestry system in semi-arid Kenya. Plant and Soil 211: 191–205, 1999.

Title, author, year, ISBN:

Storey P. J., 2002. The conservation and improvement of sloping land. Volume 1: Practical understanding. Chapter 5: Improving the soil management.

Title, author, year, ISBN:

Worfswinkel van M., undated. Intercropping of Annual Foodcrops, Agrobrief (Agromisa), N.4

Available from where? Costs?

http://www.allindiary.org/pool/resources/intercropping.pdf

Title, author, year, ISBN:

Carsan S., Holding C., 2006. Growing farm timber: practices, market and policies. The Meru timber marketing pilot programme case studies and reviews. World Agroforestry Centre.

Available from where? Costs?

http://www.worldagroforestry.org/downloads/publications/PDFs/b14639.pdf

Title, author, year, ISBN:

Chia-Chun Wu, 1998. Effective conservation practices for the cultivation of slopelands, Extension Bulletin (ASPAC/FFTC), No. 449, 7 p.

Available from where? Costs?

http://www.fao.org/prods/gap/database/gap/files/1272_CONSERVATION_ON_SLOPES.PDF

Title, author, year, ISBN:

Crozier C., 1986. Soil Conservation Techniques for Hillside Farms. A Guide for Peace Corps Volunteers. Appropriate Technologies for Development. Peace Corps Information Collection & Exchange Reprint Series No. R-62. Peace Corps Institution.

Available from where? Costs?

(The Humanity Development Library website: http://www.nzdl.org/gsdlmod?a=p&p=home&l=en&w=utf-8)

Title, author, year, ISBN:

CSIRO (Baldock J.) Soil carbon: the basics. website (http://www.csiro.au/en/Outcomes/Environment/Australian-Landscapes/soil-carbon.aspx) . Also in: Carbon Farming Fact Sheet: Store carbon for healthy soils and better yields.

Available from where? Costs?

http://www.grdc.com.au/uploads/documents/GRDC_CarbonFarming_4pp.pdf

Title, author, year, ISBN:

Elemans A., 2011. Thesis report (unpublished): Green water credits program in Saba Saba sub-catchment in the Upper Tana, Kenya.

Title, author, year, ISBN:

Gutteridge R. C. and Sheltong H. M., 1998.eridge R. C. and Shelton H. M., 1998. Forage tree legumes in tropical agriculture. (http://www.fao.org/ag/AGP/AGPC/doc/PUBLICAT/Gutt-shel/x5556e00.htm Chapter 5.2

Available from where? Costs?

http://www.fao.org/ag/AGP/AGPC/doc/Publicat/Gutt-shel/x5556e0q.htm

Title, author, year, ISBN:

HDRA , undated. Agroforestry in the Tropics.

Available from where? Costs?

http://www.thenrgroup.net/member/MRO/AER/AER-560.htm

Title, author, year, ISBN:

Haering, K., Evanylo G., 2005. Composting and Compost Use for Water Quality. In Composting resource directory. Mid-Atlantic Reg. Water Program.

Available from where? Costs?

http://infohouse.p2ric.org/ref/41/40137.pdf

Title, author, year, ISBN:

Holding C., Carsan S., Njuguna P., undated. Smallholder timber and firewood marketing in the coffee and cotton/tobacco zones of eastern Mount Kenya. In: Small-scale forestry and rural development: The intersection of ecosystems, economics and society.

Available from where? Costs?

http://www.coford.ie/media/coford/content/publications/projectreports/small-scaleforestryconference/Holding.pdf

Links and modules

Expand all Collapse all

Modules