This is an outdated, inactive version of this case. Go to the current version.
Technologies
Inactive

Vermi compost technology [Nepal]

technologies_1236 - Nepal

Completeness: 80%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:
SLM specialist:

Pandey Anagha

Kathmandu University

Nepal

SLM specialist:

Shrestha Prasanna

Kathmandu University

Nepal

SLM specialist:

Maharjan Sanu

4227240

kmcmayor@mos.com.np

Kathmandu, metropolitan Teku

Nepal

Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Kathmandu University (KU) - Nepal

1.3 Conditions regarding the use of data documented through WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Ja

1.4 Declaration on sustainability of the described Technology

Is the Technology described here problematic with regard to land degradation, so that it cannot be declared a sustainable land management technology?

Nee

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

Technology for converting biodegradable waste into organic manure with the help of earthworms

2.2 Detailed description of the Technology

Description:

Vermicomposting or worm composting is a simple technique that is used to convert the biodegradable waste into organic manure with the help of earthworms or other worms. Great care should be given in the process, since it is prepared by earthworm and are very sensitive to the external environment. The compost prepared after vermicomposting may be much beneficial as a fertilizer. It has low capital cost and operating cost. It provides excellent employment, beside the best technology it is eco friendly.

Purpose of the Technology: This technology is mainly focused on management of 64% of organic waste produced everyday. It has contributed in vegetative waste management.

Establishment / maintenance activities and inputs: The establishment of this technology was taken into consideration after many researches a decade ago. Once the set up is made to perform a vermi culture the maintenance in 3-4 months in necessary. But the maintenance is not difficult as it can be done in a very small space.

Natural / human environment: For this culture to go on smoothly there exists some natural conditions. The moisture contents should be maintained in the vessel in addition to temperature not more than 28-32°C.
In addition the vermi composting should also be given adequate safety by human. The domestic animals and other should be kept far away from the area of composing because they would harm earthworm which plays te most important role in composting. The vessel shouldn't be more than 2 ft in height.

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Nepal

Region/ State/ Province:

Nepal

Further specification of location:

Kathmandu, Lalitpur, Biratnagar, etc

2.6 Date of implementation

If precise year is not known, indicate approximate date:
  • more than 50 years ago (traditional)

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • as part of a traditional system (> 50 years)

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • access to fertilizer

3.2 Current land use type(s) where the Technology is applied

Cropland

Cropland

  • Annual cropping
  • Perennial (non-woody) cropping
Main crops (cash and food crops):

major cash crop: Rice and potato
major food crop: Maize and cauliflower

Comments:

Major land use problems (compiler’s opinion): - mixed household waste
- difficulty in separation of organic and inorganic waste.
-pollution created due to waste (vegetative and agricultural)
Major land use problems (land users’ perception): -crop productivity is limited by poor soil fertility
-intense cropping, and a scarcity of irrigation water
-decrease in the health of their crops and degraded soil conditions when chemical fertilizers are overused

3.3 Further information about land use

Water supply for the land on which the Technology is applied:
  • mixed rainfed-irrigated

3.4 SLM group to which the Technology belongs

  • integrated soil fertility management
  • beekeeping, aquaculture, poultry, rabbit farming, silkworm farming, etc.

3.5 Spread of the Technology

Specify the spread of the Technology:
  • evenly spread over an area
If the Technology is evenly spread over an area, indicate approximate area covered:
  • > 10,000 km2
Comments:

No actual data has been recorded till date related to SLM approach area. It can be practised in small area to large area. There is not any commercial background in Nepal so its indefinite. It's wide spread all over.

3.6 SLM measures comprising the Technology

agronomic measures

agronomic measures

  • A1: Vegetation/ soil cover
vegetative measures

vegetative measures

  • V1: Tree and shrub cover
  • V2: Grasses and perennial herbaceous plants
structural measures

structural measures

  • S4: Level ditches, pits
  • S11: Others
management measures

management measures

  • M1: Change of land use type
  • M4: Major change in timing of activities

3.7 Main types of land degradation addressed by the Technology

chemical soil deterioration

chemical soil deterioration

  • Cn: fertility decline and reduced organic matter content (not caused by erosion)
  • Cp: soil pollution
biological degradation

biological degradation

  • Bl: loss of soil life
Comments:

Main causes of degradation: industrial activities and mining, Heavy / extreme rainfall (intensity/amounts) (it cause erosion of top soil), population pressure
Secondary causes of degradation: soil management, crop management (annual, perennial, tree/shrub), change in temperature (denaturation of nutrients), inputs and infrastructure: (roads, markets, distribution of water points, other, …), governance / institutional

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • prevent land degradation

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

Author:

Teku

4.2 Technical specifications/ explanations of technical drawing

Firstly, the wastes are segregated and is arranged in a container. the base of the container i.e the bedding may be done using straw or paper. The layer above it is the soil layer. Next, the earthworm layer followed by the organic waste. the container is closed with a lid with holes in it. After certain time interval the manure prepared is arranged .
Later, the earthworms are separated from the compost formed.

Kathmandu

Technical knowledge required for field staff / advisors: low
Technical knowledge required for land users: low (indigenous knowledge)

Main technical functions: increase in organic matter
Secondary technical functions: increase in nutrient availability (supply, recycling,…), increase of infiltration

Aligned: -along boundary
Vegetative material: T : trees / shrubs
Number of plants per (ha): 4.3 tonnes/ha
Vertical interval between rows / strips / blocks (m): 0.3
Vertical interval within rows / strips / blocks (m): 0.1

Structural measure: container
Width of bunds/banks/others (m): 0.6096
Length of bunds/banks/others (m): 2.4384

Construction material (earth): mud can be used as base or it is also used in the container made of other materials.
Construction material (concrete): a container is necessary

4.3 General information regarding the calculation of inputs and costs

Specify currency used for cost calculations:
  • US Dollars

4.4 Establishment activities

Activity Type of measure Timing
1. container with lid Structural
2. earthworm Structural
3. straw, paper or cloth Structural

4.5 Costs and inputs needed for establishment

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Equipment Container with lid pieces 1.0 62.5 62.5
Equipment Earthworm worms 625.0 0.02 12.5
Equipment Straw, paper or cloth kg 2.0 0.9 1.8
Total costs for establishment of the Technology 76.8

4.6 Maintenance/ recurrent activities

Activity Type of measure Timing/ frequency
1. moisture maintenance Structural once a day
2. hatching Structural once in 3-4 months
3. vegetative waste Structural added everyday for 1-2 months

4.7 Costs and inputs needed for maintenance/ recurrent activities (per year)

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour Moisture maintenance persons/month 1.0 1.5 1.5
Labour Hatching persons/3 month 1.0 1.5 1.5
Equipment Vegetative waste kg 2.0
Total costs for maintenance of the Technology 3.0
Comments:

Costs calculated on the basis of earthworms used and some of the tools used.
The container used in Kathmandu metropolitan, Teku is of measurement 2.4384 m in length and 0.6096 m in width which gives about 500 kg of compost after few months.

4.8 Most important factors affecting the costs

Describe the most determinate factors affecting the costs:

The number of earthworm used for composting affect the cost.

5. Natural and human environment

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Topsoil organic matter:
  • high (>3%)
If available, attach full soil description or specify the available information, e.g. soil type, soil PH/ acidity, Cation Exchange Capacity, nitrogen, salinity etc.

Soil fertility is very high
Soil drainage / infiltration is good
Soil water storage capacity is medium

5.6 Characteristics of land users applying the Technology

Market orientation of production system:
  • mixed (subsistence/ commercial
Off-farm income:
  • 10-50% of all income
Relative level of wealth:
  • poor
  • average
Individuals or groups:
  • groups/ community
Level of mechanization:
  • manual work
  • mechanized/ motorized
Gender:
  • women
  • men
Indicate other relevant characteristics of the land users:

Land users applying the Technology are mainly common / average land users
Population density: 100-200 persons/km2
10% of the land users are rich.
60% of the land users are average wealthy.
30% of the land users are poor.
Level of mechanization: Tractor use.

5.7 Average area of land owned or leased by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
  • small-scale

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • group
  • individual, not titled
  • government
Land use rights:
  • communal (organized)
  • individual
Water use rights:
  • open access (unorganized)
  • communal (organized)
Comments:

land and water resources are used fro communal property

5.9 Access to services and infrastructure

health:
  • poor
  • moderate
  • good
education:
  • poor
  • moderate
  • good
technical assistance:
  • poor
  • moderate
  • good
employment (e.g. off-farm):
  • poor
  • moderate
  • good
markets:
  • poor
  • moderate
  • good
energy:
  • poor
  • moderate
  • good
roads and transport:
  • poor
  • moderate
  • good
drinking water and sanitation:
  • poor
  • moderate
  • good
financial services:
  • poor
  • moderate
  • good

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

fodder production

decreased
increased

fodder quality

decreased
increased

wood production

decreased
increased

product diversity

decreased
increased

land management

hindered
simplified
Income and costs

farm income

decreased
increased

workload

increased
decreased
Comments/ specify:

Time consuming

Socio-cultural impacts

food security/ self-sufficiency

reduced
improved

health situation

worsened
improved

SLM/ land degradation knowledge

reduced
improved

situation of socially and economically disadvantaged groups

worsened
improved

livelihood and human well-being

reduced
improved
Comments/ specify:

It has taught people to manage 64% of the household waste. - the product from this technology is much efficient in the agriculture. - this can be taken into commercial level. - the solid waste management problem is reduced to minimum on adoption of this technology.

Production of smell

increased
decreased

Ecological impacts

Water cycle/ runoff

evaporation

increased
decreased
Soil

soil moisture

decreased
increased

soil cover

reduced
improved

soil compaction

increased
reduced

nutrient cycling/ recharge

decreased
increased

soil organic matter/ below ground C

decreased
increased
Biodiversity: vegetation, animals

beneficial species

decreased
increased

6.2 Off-site impacts the Technology has shown

groundwater/ river pollution

increased
reduced

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Gradual climate change

Gradual climate change
Season Type of climatic change/ extreme How does the Technology cope with it?
annual temperature increase well

Climate-related extremes (disasters)

Meteorological disasters
How does the Technology cope with it?
local rainstorm well
Climatological disasters
How does the Technology cope with it?
drought not well
Comments:

- more variety of earthworm.
- new design for the base formation.

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

positive

Long-term returns:

positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

slightly positive

Long-term returns:

slightly positive

Comments:

The vermi composting has many benefits compared to harms and is very economical in any way.

6.5 Adoption of the Technology

Comments:

There is a little trend towards spontaneous adoption of the Technology

6.7 Strengths/ advantages/ opportunities of the Technology

Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
Management of solid waste, reduces cost of waste management.
utilization of organic waste.
helps to generate income.
very economical and gives best manure for food crops.
no much labour.

6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them

Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view How can they be overcome?
Vermi culture is not wide spread even within a community. Awareness to a high priority is required.
No segregation from household level. Governmental efforts should be given priority.
No sufficient market. Priority from all the sectors is important.
Process can be quicker only in the presence of more labour. Different technical support can help to make it quicker.
Vulnerable to environment pressure such as temp, drought, etc. Regular maintenance is required.

7. References and links

7.1 Methods/ sources of information

  • field visits, field surveys
  • interviews with land users

7.2 References to available publications

Title, author, year, ISBN:

Technical manuals:Community mobilization unitKathmandu Metropolitan

Available from where? Costs?

Teku, Kathmandu

Links and modules

Expand all Collapse all

Modules