This is an outdated, inactive version of this case. Go to the current version.
Technologies
Inactive

Integrated Production and Pest Management (IPPM) [Mali]

Gestion intégrée de la production et des déprédateurs (GIPD) (French)

technologies_1653 - Mali

Completeness: 69%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:
SLM specialist:

Dako Jean Parfait

parfaitdako@yahoo.fr

Direction Nationale de l'Agriculture

Mali

Name of project which facilitated the documentation/ evaluation of the Technology (if relevant)
Manual of Good Practices in Small Scale Irrigation in the Sahel (GIZ )
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH (GIZ) - Germany
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Direction Nationale de l'Agriculture (DNA) - Mali

1.3 Conditions regarding the use of data documented through WOCAT

When were the data compiled (in the field)?

01/07/2012

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Ja

1.4 Declaration on sustainability of the described Technology

Is the Technology described here problematic with regard to land degradation, so that it cannot be declared a sustainable land management technology?

Nee

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

IPPM reduces the negative impact wrought by pesticides on the environment (wildlife, water, soil) and on humankind

2.2 Detailed description of the Technology

Description:

Integrated Production and Pest Management (IPPM) curbs the environmental degradation caused by current farming practices (intensive and extensive), reducing the negative impact wrought by pesticides on the environment (wildlife, water, soil) and on humankind. IPPM promotes the adoption of farming practices that are as respectful of the environment as they are productive and profitable.

Purpose of the Technology: IPPM works with all available techniques for combatting pests, while keeping pesticide use at economically justified levels. It reduces risks to human and animal health and to the environment. It is put into practice in farmer field schools (FFSs).

Establishment / maintenance activities and inputs: Implementation: Men and women farmers are informed about the harmful effects of pesticide use. A group of local farmers are offered the opportunity to form a farmer field school led by a facilitator (with 25 farmers in each FFS group). The weekly sessions of the FFS focus on studying the presence
of insects and diseases and the condition of plants. The results are recorded in a study-findings logbook. Biopesticides like neem extract are used and their effectiveness is studied. Operation: Setting the critical thresholds for pest infestation of crops and evaluating the treatments required; Composing and applying pesticides according to the level of infestation.
Roles of the actors involved: Producers participate in the FFS and apply the techniques on their lands. Technical services provide training in good farming practices and link up the plant-disease and insect experts with the FFS facilitators. Research institutions make their plant-disease and insect experts
available and train up the technical services.

Natural / human environment: Implementation locations: All regions throughout Mali. On going for around 12 years. This technique is particularly popular with farmers. Trained facilitators and farming advisors are available.

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Mali

Region/ State/ Province:

Mali

2.6 Date of implementation

If precise year is not known, indicate approximate date:
  • 10-50 years ago

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • through projects/ external interventions

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • reduce, prevent, restore land degradation
  • preserve/ improve biodiversity
  • create beneficial social impact

3.2 Current land use type(s) where the Technology is applied

Cropland

Cropland

  • Annual cropping
Comments:

Major land use problems (compiler’s opinion): environmental degradation caused by current farming practices (intensive and extensive)

3.3 Further information about land use

Water supply for the land on which the Technology is applied:
  • mixed rainfed-irrigated
Number of growing seasons per year:
  • 1
Specify:

Longest growing period in days: 120, Longest growing period from month to month: August-November

3.4 SLM group to which the Technology belongs

  • integrated pest and disease management (incl. organic agriculture)

3.6 SLM measures comprising the Technology

management measures

management measures

  • M7: Others
Comments:

Specification of other management measures: combatting pests

3.7 Main types of land degradation addressed by the Technology

biological degradation

biological degradation

  • Bp: increase of pests/ diseases, loss of predators
Comments:

Main causes of degradation: soil management (Unadapted landuse methods, reduced or abandoned fallow periods), crop management (annual, perennial, tree/shrub) (negative impact of pesticides, neglect of fallow periods and crop rotation), droughts (due to heat waves), population pressure (rapidly growing population increasing pressure on land), land tenure (insecure access to land and collectively managed communal land), poverty / wealth (very poor population)

Secondary causes of degradation: deforestation / removal of natural vegetation (incl. forest fires) (deforestation through overgrazing and fire wood collection), over-exploitation of vegetation for domestic use (firewood collection), overgrazing (cattle, sheep and goats), change in temperature (Climate change: heat waves), change of seasonal rainfall (more variable onset of rain), Heavy / extreme rainfall (intensity/amounts) (more variable and intensive rains), wind storms / dust storms (frequent storms), floods (due to intensive rain storms), labour availability (some migration of men to nearby cities), education, access to knowledge and support services (high level of illiteracy)

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • prevent land degradation
  • reduce land degradation

4. Technical specifications, implementation activities, inputs, and costs

4.2 Technical specifications/ explanations of technical drawing

Technical knowledge required for field staff / advisors: high
Technical knowledge required for land users: low

Main technical functions: combatting pests, change in farming practices

Other type of management: IPPM works with all available techniques for combatting pests, while keeping pesticide use at economically justified levels. Adoption of respectful farming practices.

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Agro-climatic zone
  • semi-arid

Thermal climate class: tropics

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • medium (loamy, silty)
  • fine/ heavy (clay)
Topsoil organic matter:
  • medium (1-3%)
  • low (<1%)
If available, attach full soil description or specify the available information, e.g. soil type, soil PH/ acidity, Cation Exchange Capacity, nitrogen, salinity etc.

Soil fertility: Medium
Soil drainage/infiltration: Medium and poor
Soil water storage capacity: Medium

5.4 Water availability and quality

Ground water table:

5-50 m

Availability of surface water:

medium

Water quality (untreated):

for agricultural use only (irrigation)

Comments and further specifications on water quality and quantity:

Availability of surface water: Also poor/ none

5.5 Biodiversity

Species diversity:
  • medium

5.6 Characteristics of land users applying the Technology

Market orientation of production system:
  • mixed (subsistence/ commercial
Off-farm income:
  • 10-50% of all income
Relative level of wealth:
  • poor
  • average
Level of mechanization:
  • manual work
Gender:
  • men
Indicate other relevant characteristics of the land users:

Population density: < 10 persons/km2
Annual population growth: 2% - 3%
10% of the land users are rich.
50% of the land users are average wealthy.
30% of the land users are poor.
10% of the land users are poor.

5.7 Average area of land owned or leased by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
  • small-scale

5.8 Land ownership, land use rights, and water use rights

Comments:

The irrigated area is allocated by the chief

5.9 Access to services and infrastructure

health:
  • poor
  • moderate
  • good
education:
  • poor
  • moderate
  • good
technical assistance:
  • poor
  • moderate
  • good
employment (e.g. off-farm):
  • poor
  • moderate
  • good
markets:
  • poor
  • moderate
  • good
energy:
  • poor
  • moderate
  • good
roads and transport:
  • poor
  • moderate
  • good
drinking water and sanitation:
  • poor
  • moderate
  • good
financial services:
  • poor
  • moderate
  • good

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

risk of production failure

increased
decreased
Water availability and quality

water availability for livestock

decreased
increased

water quality for livestock

decreased
increased
Income and costs

expenses on agricultural inputs

increased
decreased
Comments/ specify:

Reduced use of pesticides

Socio-cultural impacts

food security/ self-sufficiency

reduced
improved

health situation

worsened
improved
Comments/ specify:

Reduced risk to human and animal health and to the environment

SLM/ land degradation knowledge

reduced
improved

situation of socially and economically disadvantaged groups

worsened
improved

Improved livelihoods and human well-being

decreased
increased
Comments/ specify:

IPPM promotes the adoption of farming practices that are as respectful of the environment as they are productive and profitable. It reduces risks to human and animal health and to the environment.

Ecological impacts

Water cycle/ runoff

water quality

decreased
increased
Biodiversity: vegetation, animals

plant diversity

decreased
increased

animal diversity

decreased
increased

beneficial species

decreased
increased

habitat diversity

decreased
increased

pest/ disease control

decreased
increased
Climate and disaster risk reduction

emission of carbon and greenhouse gases

increased
decreased

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Gradual climate change

Gradual climate change
Season Type of climatic change/ extreme How does the Technology cope with it?
annual temperature increase well

Climate-related extremes (disasters)

Meteorological disasters
How does the Technology cope with it?
local rainstorm not well
local windstorm well
Climatological disasters
How does the Technology cope with it?
drought well
Hydrological disasters
How does the Technology cope with it?
general (river) flood well

Other climate-related consequences

Other climate-related consequences
How does the Technology cope with it?
reduced growing period well

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

positive

Long-term returns:

very positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

very positive

Long-term returns:

very positive

6.5 Adoption of the Technology

Comments:

There is a moderate trend towards spontaneous adoption of the Technology

Comments on adoption trend: Implementation locations: All regions throughout Mail.
Scope of application: All farmed basins.
Duration of application: On going for around 12 years

6.7 Strengths/ advantages/ opportunities of the Technology

Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
Reduction in pest control costs
Farm production is healthier and the environment is better protected
The use of pesticides for safeguarding production in rural areas is now very low.
Reduction of the negative impact wrought by pesticides on the environment (wildlife, water, soil) and on humankind

6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them

Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view How can they be overcome?
The village facilitators and farmers participating in the FFS must be literate
IPPM requires inputs from plant-disease and insect experts

7. References and links

7.1 Methods/ sources of information

  • field visits, field surveys
  • interviews with land users

7.2 References to available publications

Title, author, year, ISBN:

Annual reports for 2010, 2011 and 2012 – IPPM/DNA

7.3 Links to relevant information which is available online

Title/ description:

Manual of Good Practices in Small Scale Irrigation in the Sahel. Experiences from Mali. Published by GIZ in 2014.

URL:

http://star-www.giz.de/starweb/giz/pub/servlet.starweb

Links and modules

Expand all Collapse all

Modules