This is an outdated, inactive version of this case. Go to the current version.
Technologies
Inactive

No-till with controlled traffic [Australia]

no-till, permanent uncropped wheel tracks,eliminate soil compaction, judiciois spraying

technologies_945 - Australia

Completeness: 69%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:
SLM specialist:

Griffith Noel

Jimbour (north of Dalby), Queensland, Australia

Name of project which facilitated the documentation/ evaluation of the Technology (if relevant)
Book project: where the land is greener - Case Studies and Analysis of Soil and Water Conservation Initiatives Worldwide (where the land is greener)

1.3 Conditions regarding the use of data documented through WOCAT

When were the data compiled (in the field)?

01/02/2004

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Ja

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

Large-scale no-till grain production with permanent wheel tracks
common to all on-farm equipment.

2.2 Detailed description of the Technology

Description:

This controlled traffic, no-till farming system (CT/NT) is practiced on a 1,900 ha farm on the broad, almost flat Jandowae Plains in semi-arid Queensland, Australia. Principal soil types are vertisols, with some poorer areas where the sand content is greater, and these have a tendency to hard-set and crust. Over the past five years, the farm owner has changed the farming system completely from conventional farming to no-till with controlled traffic. Controlled traffic means permanent uncropped wheel tracks or ‘tramlines’: all equipment has 2 metre axles. The total farm machinery comprises a tractor, a spray rig and two 11 meter zero-till planter/fertilizer units; one each for wheat and sorghum sowing. The tramlines were laid out two years ago by a contractor using Geographical Positioning System (GPS).
The main technical objective was to eliminate soil compaction. The CT/NT combination ensures the land -between the tramlines - remains in excellent condition. There has been no ploughing or tillage at all in those 5 years. He practices a three year rotation between winter wheat, summer sorghum and fallow, but the system is not fixed: it depends very much on soil moisture status and thus on the rainfall (opportunity cropping). Generally in summer about one third is in summer sorghum and in winter about one third in winter wheat, the rest of the land is
under fallow. The one-year fallow is maintained through the use of herbicides sprayed onto the undisturbed residue from the previous crop. The system is designed for rain capture - to build up soil moisture stores in the fallow periods for subsequent crops - and for disease control (to ‘spell’ the land). During the cropping cycle, the key to his effective weed control system is ‘to get in early’ and ‘actively chase weeds’ through judicious spraying. The farm is now free of the locally common persistent weed Erigeron annuus. In the five years his sorghum yields have risen from 3 to 7 tons per hectares. Over the last three years the soil has improved, becoming soft, friable and moist between his plant lines. Infiltration has improved a lot and soil structure is now excellent.
Tractor use and overall fuel consumption has decreased to less than one quarter of that under conventional tillage. Correspondingly the workload is hugely reduced: from four men required under the conventional system for an equivalent area, the farmer is the sole operator, very occasionally assisted by his son, and a paid contractor for harvesting. He is so satisfied with the CT/NT system that he is attempting to purchase a nearby property to extend the area that he can farm using his current machinery.

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Australia

Region/ State/ Province:

Jimbour (north of Dalby), Queensland

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • during experiments/ research

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • improve production
  • reduce, prevent, restore land degradation
  • create beneficial economic impact

3.2 Current land use type(s) where the Technology is applied

Cropland

Cropland

  • Annual cropping
Main crops (cash and food crops):

Major cash crops: Sorghum and Wheat

Comments:

Major land use problems (compiler’s opinion): The farmer’s main reason for starting the combination of CT and NT was to rid himself of soil compaction, in order to achieve better utilisation of locally low and unpredictable rainfall amounts while minimising costs and reducing labour and machinery requirements.

3.3 Further information about land use

Water supply for the land on which the Technology is applied:
  • rainfed
Number of growing seasons per year:
  • 2
Specify:

Longest growing period in days: 180 Longest growing period from month to month: Oct - AprS econd longest growing period in days: 180 Second longest growing period from month to month: Apr - Sep

3.4 SLM group to which the Technology belongs

  • minimal soil disturbance

3.5 Spread of the Technology

Comments:

Total area covered by the SLM Technology is 19 m2.

3.6 SLM measures comprising the Technology

3.7 Main types of land degradation addressed by the Technology

soil erosion by water

soil erosion by water

  • Wt: loss of topsoil/ surface erosion
  • Wg: gully erosion/ gullying
soil erosion by wind

soil erosion by wind

  • Et: loss of topsoil
physical soil deterioration

physical soil deterioration

  • Pc: compaction
Comments:

Main type of degradation addressed: Wt: loss of topsoil / surface erosion, Pc: compaction

Secondary types of degradation addressed: Wg: gully erosion / gullying, Et: loss of topsoil

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • reduce land degradation

4. Technical specifications, implementation activities, inputs, and costs

4.2 Technical specifications/ explanations of technical drawing

Technical knowledge required for field staff / advisors: moderate

Technical knowledge required for land users: moderate

Main technical functions: control of raindrop splash, control of dispersed runoff: retain / trap, improvement of ground cover, increase in organic matter, increase of infiltration, increase / maintain water stored in soil, improvement of soil structure, reduction of compaction by traffic, increase of soil fertility

Agronomic measure: conservation tillage
Remarks: with controlled traffic

4.3 General information regarding the calculation of inputs and costs

other/ national currency (specify):

Aus$

4.5 Costs and inputs needed for establishment

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour Labour ha 1.0 5.0 5.0 100.0
Total costs for establishment of the Technology 5.0
Comments:

Duration of establishment phase: 12 month(s)

4.6 Maintenance/ recurrent activities

Activity Type of measure Timing/ frequency
1. Layout of the controlled traffic lines (tramlines) Agronomic Two days were adequate for the establishment on the whole farm.
2. Weed control (spray-coupe) with roundup Agronomic Summer sorghum (650 ha, during 1 season or half a year)
3. Fertilizing Agronomic Summer sorghum (650 ha, during 1 season or half a year)
4. Sowing and simultaneous application of starter fertilizer Agronomic Mid October, Summer sorghum (650 ha, during 1 season or half a year)
5. Spraying pre-emergent herbicide to kill summer grasses Agronomic Summer sorghum (650 ha, during 1 season or half a year)
6. Harvest by contractors Agronomic early March, Summer sorghum (650 ha, during 1 season or half a year)
7. Weed control Agronomic Winter wheat (650 ha, during 1 season or half a year)
8. Fertilizing (Urea) Agronomic Winter wheat (650 ha, during 1 season or half a year)
9. Sowing and simultaneous application of starter fertilizer Agronomic Mid May, Winter wheat (650 ha, during 1 season or half a year)
10. In-crop weed spray Agronomic Winter wheat (650 ha, during 1 season or half a year)
11. Harvest by contractors Agronomic October
12. Fallow (1,250 ha) Agronomic During 2 seasons or totally 1 year
13. Weed control (combination of roundup mixed with broadleaf herbicide) Agronomic 5–6 times per fallow period
14. Determine the soil moisture (To determine soil moisture he uses an iron rod; if he can push it into the heavy clay soil, then the soil is moist. Additionally, he measures rainfall) Agronomic

4.7 Costs and inputs needed for maintenance/ recurrent activities (per year)

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour Labour ha 1.0 5.0 5.0 100.0
Equipment Animal traction ha 1.0 6.0 6.0 100.0
Equipment Harvesting by contractor ha 1.0 17.0 17.0 100.0
Plant material Seeds ha 1.0 8.0 8.0 100.0
Fertilizers and biocides Fertilizer ha 1.0 53.0 53.0 100.0
Fertilizers and biocides Biocides ha 1.0 22.0 22.0 100.0
Total costs for maintenance of the Technology 111.0
Comments:

Machinery/ tools: tactor,spray rig, zero-till planter/fertilizer, iron rod

Comparison of costs between conventional tillage and no-till farming (CT/NT): (1) Labour costs are 4x less in CT/NT: 4 men used to work on the farm (conventional), now the farmer is alone – (plus contractors for harvesting). (2) Average annual diesel consumption: reduced from 108,333 litres (conventional) to 13,636 litres (no-till) which is 8 times less. (3) Costs of equipment to set up a CT/NT system (US$ 240,000) are 3 times less than that for conventional tillage equipment (US$ 700,000).
(4) For biocides he has to invest 5 times more in CT/NT. The conventional values are estimates.

4.8 Most important factors affecting the costs

Describe the most determinate factors affecting the costs:

In average one third of the farm area is in crop and two thirds are fallow. This means that overall farming costs per
ha are reduced, since during fallow period activities are limited to spraying herbicides. Labour costs approximately US$ 160 per day. Machinery costs average out at US$ 20 per hour (diesel costs US$ 0.9 per litre). All the data comes from this single farmer. Purchase of equipment is not included in the table above.

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Agro-climatic zone
  • semi-arid
  • arid

Thermal climate class: subtropics

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
Comments and further specifications on topography:

Landforms: Also footslopes and valley floors (both ranked 2)
Slopes on average: Also moderate (ranked 2) and rolling (ranked 3)

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • fine/ heavy (clay)
Topsoil organic matter:
  • medium (1-3%)
  • low (<1%)
If available, attach full soil description or specify the available information, e.g. soil type, soil PH/ acidity, Cation Exchange Capacity, nitrogen, salinity etc.

Soil depth on average: Also shallow and deep (both ranked 2)
Soil fertility: Medium (ranked 1) and high (ranked 2)
Soil drainage: Poor

5.6 Characteristics of land users applying the Technology

Market orientation of production system:
  • commercial/ market
Off-farm income:
  • less than 10% of all income
Relative level of wealth:
  • average
Indicate other relevant characteristics of the land users:

and own 88% of the land.

5.7 Average area of land owned or leased by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • individual, titled
Land use rights:
  • individual

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased
Income and costs

farm income

decreased
increased

Socio-cultural impacts

SLM/ land degradation knowledge

reduced
improved

Ecological impacts

Water cycle/ runoff

excess water drainage

reduced
improved
Soil

soil moisture

decreased
increased

soil cover

reduced
improved

soil loss

increased
decreased

soil compaction

increased
reduced

soil organic matter/ below ground C

decreased
increased
Biodiversity: vegetation, animals

plant diversity

decreased
increased

animal diversity

decreased
increased

habitat diversity

decreased
increased
Other ecological impacts

Soil fertility

decreased
increased

6.2 Off-site impacts the Technology has shown

reliable and stable stream flows in dry season

reduced
increased

downstream flooding

increased
reduced

downstream siltation

increased
decreased

groundwater/ river pollution

increased
reduced

Transported sediments

decreased
increased

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

very positive

Long-term returns:

very positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

very positive

Long-term returns:

very positive

6.5 Adoption of the Technology

If available, quantify (no. of households and/ or area covered):

200

Comments:

200 land user families have adopted the Technology without any external material support

There is no trend towards spontaneous adoption of the Technology

Comments on adoption trend: There isn’t a strong trend now towards growing spontaneous adoption: uptake has slowed dramatically as many conservative farmers prefer to continue their traditional tillage practices.

6.7 Strengths/ advantages/ opportunities of the Technology

Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
Land that previously was un-farmable is now under crops. Site inspection shows initially poor land to be now in good condition (after only 5 years). The value of the land has increased

How can they be sustained / enhanced? Farmers practising CT/NT can and are buying/leasing more land, which will improve the overall state of the land in Queensland.
Farmers can manage much larger growing areas with less personnel and equipment. A single operator is well able to run a large arable farm on his own

How can they be sustained / enhanced? Ditto.
Cereal farming is now less prone to yield losses (and crop failure) in drought years – as there is better rainwater infiltration and water use efficiency with CT/NT

How can they be sustained / enhanced? Continue with the system.
He has all weeds under control (without need for tillage).

6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them

Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view How can they be overcome?
The contract harvester runs on 3 m wide axles, so the wheels run on the beds. However, there has only been one wet harvest in 5 years so the incidence of soil compaction from harvesting is negligible This is not really seen as a problem. One solution would be to build a dedicated harvester (too expensive) or find a contractor with equipment that fitted the system.
A conservative mentality towards conservation agriculture is constraining the adoption of the system by other farmers Continue demonstrating and disseminating knowledge about benefits.

7. References and links

7.2 References to available publications

Title, author, year, ISBN:

Blackwell P (1998) Customised controlled traffic farming systems, instead of standard recommendations or ‘tramlines ain’t tramlines’.In Second national controlled farming conference, pp. 23–26. Eds JN Tullberg and DF Yule.

Available from where? Costs?

Gatton College: University of Queensland

Title, author, year, ISBN:

Hulme PJ, McKenzie DC, MacLeod DA and Anthony DTW (1996) An evaluation of controlled traffic with reduced tillage for irrigated cotton on a Vertisol.
Soil and Tillage Research 38:217–237

Title, author, year, ISBN:

McGarry D, Bridge BJ and Radford BJ (2000). Contrasting soil physical properties after zero and traditional tillage of an alluvial soil in the semi-arid tropics. Soil and Tillage Research 53:105–115

Links and modules

Expand all Collapse all

Modules