This is an outdated, inactive version of this case. Go to the current version.
Technologies
Inactive

Le système d’Agroforesterie pour la protection des terres et l'amélioration des revenus des exploitants dans les zones montagneuses.de Nord Ouest Tunisien [Tunisia]

Agroforesterie

technologies_3722 - Tunisia

Completeness: 71%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:

Tunisia

SLM specialist:

Tunisia

land user:

Tunisia

Name of project which facilitated the documentation/ evaluation of the Technology (if relevant)
Decision Support for Mainstreaming and Scaling out Sustainable Land Management (GEF-FAO / DS-SLM)
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Office de Développement Sylvo-Pastoral du Nord-Ouest (ODESYPANO) - Tunisia

1.3 Conditions regarding the use of data documented through WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Ja

1.4 Declaration on sustainability of the described Technology

Is the Technology described here problematic with regard to land degradation, so that it cannot be declared a sustainable land management technology?

Nee

1.5 Reference to Questionnaire(s) on SLM Approaches (documented using WOCAT)

Projet de développement des zones montagneuses du Nord Ouest Tunisien.
approaches

Projet de développement des zones montagneuses du Nord … [Tunisia]

Le projet de développement des zones montagneuses de Nord Ouest Tunisien est mis en oeuvre par l'Office de développement sylvo-pastoral de Nord Ouest en adoptant une approche participative et intégrée afin de promouvoir le développement socio-économique et agro-écologique des zones montagneuses.

  • Compiler: Donia Mühlematter

2. Description of the SLM Technology

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Tunisia

Specify the spread of the Technology:
  • evenly spread over an area
If precise area is not known, indicate approximate area covered:
  • 0.1-1 km2

2.6 Date of implementation

If precise year is not known, indicate approximate date:
  • 10-50 years ago

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • through projects/ external interventions

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • improve production
  • reduce, prevent, restore land degradation
  • reduce risk of disasters
  • create beneficial economic impact
  • create beneficial social impact

3.2 Current land use type(s) where the Technology is applied

Land use mixed within the same land unit:

Ja

Specify mixed land use (crops/ grazing/ trees):
  • Agroforestry

Cropland

Cropland

Number of growing seasons per year:
  • 1
Grazing land

Grazing land

Extensive grazing:
  • Ranching
Intensive grazing/ fodder production:
  • Cut-and-carry/ zero grazing
Forest/ woodlands

Forest/ woodlands

3.4 Water supply

Water supply for the land on which the Technology is applied:
  • rainfed

3.5 SLM group to which the Technology belongs

  • agroforestry
  • integrated crop-livestock management
  • improved ground/ vegetation cover

3.6 SLM measures comprising the Technology

agronomic measures

agronomic measures

  • A1: Vegetation/ soil cover
  • A3: Soil surface treatment
vegetative measures

vegetative measures

  • V1: Tree and shrub cover
management measures

management measures

  • M1: Change of land use type
  • M2: Change of management/ intensity level
  • M7: Others

3.7 Main types of land degradation addressed by the Technology

soil erosion by water

soil erosion by water

  • Wt: loss of topsoil/ surface erosion
chemical soil deterioration

chemical soil deterioration

  • Cn: fertility decline and reduced organic matter content (not caused by erosion)
physical soil deterioration

physical soil deterioration

  • Pc: compaction
biological degradation

biological degradation

  • Bc: reduction of vegetation cover

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • prevent land degradation
  • reduce land degradation

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

Date:

14/05/2018

4.2 General information regarding the calculation of inputs and costs

Specify how costs and inputs were calculated:
  • per Technology area
If relevant, indicate exchange rate from USD to local currency (e.g. 1 USD = 79.9 Brazilian Real): 1 USD =:

2.45

4.4 Costs and inputs needed for establishment

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour None None 100.0 3.0 300.0 100.0
Equipment None None 100.0 2.0 200.0
Plant material None None 100.0 2.2 220.0
Fertilizers and biocides None None 3.0 50.0 150.0 100.0
Total costs for establishment of the Technology 870.0

4.6 Costs and inputs needed for maintenance/ recurrent activities (per year)

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour None None 100.0 2.0 200.0 100.0
Labour None None 100.0 1.0 100.0 100.0
Equipment None None 2.0 25.0 50.0 100.0
Fertilizers and biocides None None 1.0 50.0 50.0 100.0
Total costs for maintenance of the Technology 400.0

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Agro-climatic zone
  • sub-humid

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
Indicate if the Technology is specifically applied in:
  • concave situations

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • medium (loamy, silty)
Soil texture (> 20 cm below surface):
  • medium (loamy, silty)
  • fine/ heavy (clay)
Topsoil organic matter:
  • low (<1%)

5.4 Water availability and quality

Ground water table:

on surface

Availability of surface water:

poor/ none

Water quality (untreated):

poor drinking water (treatment required)

Is water salinity a problem?

Nee

Is flooding of the area occurring?

Nee

5.5 Biodiversity

Species diversity:
  • medium
Habitat diversity:
  • medium

5.6 Characteristics of land users applying the Technology

Sedentary or nomadic:
  • Sedentary
Market orientation of production system:
  • mixed (subsistence/ commercial)
Off-farm income:
  • less than 10% of all income
Relative level of wealth:
  • rich
Individuals or groups:
  • groups/ community
Level of mechanization:
  • mechanized/ motorized
Gender:
  • men
Age of land users:
  • middle-aged

5.7 Average area of land used by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
  • small-scale

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • individual, titled
Land use rights:
  • individual

5.9 Access to services and infrastructure

health:
  • poor
  • moderate
  • good
education:
  • poor
  • moderate
  • good
technical assistance:
  • poor
  • moderate
  • good
employment (e.g. off-farm):
  • poor
  • moderate
  • good
markets:
  • poor
  • moderate
  • good
energy:
  • poor
  • moderate
  • good
roads and transport:
  • poor
  • moderate
  • good
drinking water and sanitation:
  • poor
  • moderate
  • good
financial services:
  • poor
  • moderate
  • good

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

crop quality

decreased
increased

fodder production

decreased
increased

fodder quality

decreased
increased

animal production

decreased
increased

risk of production failure

increased
decreased

product diversity

decreased
increased

production area

decreased
increased

land management

hindered
simplified
Income and costs

expenses on agricultural inputs

increased
decreased

farm income

decreased
increased

diversity of income sources

decreased
increased

workload

increased
decreased

Socio-cultural impacts

food security/ self-sufficiency

reduced
improved

community institutions

weakened
strengthened

SLM/ land degradation knowledge

reduced
improved

conflict mitigation

worsened
improved

Ecological impacts

Water cycle/ runoff

surface runoff

increased
decreased

evaporation

increased
decreased
Soil

soil moisture

decreased
increased

soil cover

reduced
improved

soil loss

increased
decreased

soil crusting/ sealing

increased
reduced

soil compaction

increased
reduced

soil organic matter/ below ground C

decreased
increased
Biodiversity: vegetation, animals

Vegetation cover

decreased
increased

biomass/ above ground C

decreased
increased

plant diversity

decreased
increased

invasive alien species

increased
reduced

animal diversity

decreased
increased

beneficial species

decreased
increased

habitat diversity

decreased
increased

pest/ disease control

decreased
increased
Climate and disaster risk reduction

flood impacts

increased
decreased

landslides/ debris flows

increased
decreased

drought impacts

increased
decreased

impacts of cyclones, rain storms

increased
decreased

emission of carbon and greenhouse gases

increased
decreased

fire risk

increased
decreased

wind velocity

increased
decreased

micro-climate

worsened
improved

6.2 Off-site impacts the Technology has shown

downstream flooding

increased
reduced

damage on neighbours' fields

increased
reduced

damage on public/ private infrastructure

increased
reduced

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Gradual climate change

Gradual climate change
Season increase or decrease How does the Technology cope with it?
annual temperature increase well
seasonal temperature dry season increase well
annual rainfall decrease well
seasonal rainfall wet/ rainy season decrease well

Climate-related extremes (disasters)

Meteorological disasters
How does the Technology cope with it?
local thunderstorm very well
Climatological disasters
How does the Technology cope with it?
drought very well
Hydrological disasters
How does the Technology cope with it?
general (river) flood well
landslide very well
Biological disasters
How does the Technology cope with it?
epidemic diseases moderately

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

negative

Long-term returns:

positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

slightly negative

Long-term returns:

very positive

6.5 Adoption of the Technology

  • single cases/ experimental
Of all those who have adopted the Technology, how many did so spontaneously, i.e. without receiving any material incentives/ payments?
  • 51-90%

6.6 Adaptation

Has the Technology been modified recently to adapt to changing conditions?

Ja

If yes, indicate to which changing conditions it was adapted:
  • changing markets

7. References and links

7.1 Methods/ sources of information

  • field visits, field surveys
  • interviews with land users
  • interviews with SLM specialists/ experts

Links and modules

Expand all Collapse all

Modules