Technologies

Régénération Naturelle Assistée (RNA) [Senegal]

“Karkaral”, “RNA”

technologies_6615 - Senegal

Completeness: 73%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:
SLM specialist:

Mali

SLM specialist:
SLM specialist:

Senegal

SLM specialist:

Senegal

Name of project which facilitated the documentation/ evaluation of the Technology (if relevant)
Reversing land degradation in Africa by scaling-up Evergreen Agriculture (Regreening Africa)
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
International Centre for Research in Agroforestry (ICRAF) - Kenya

1.3 Conditions regarding the use of data documented through WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Ja

1.4 Declaration on sustainability of the described Technology

Is the Technology described here problematic with regard to land degradation, so that it cannot be declared a sustainable land management technology?

Nee

1.5 Reference to Questionnaire(s) on SLM Approaches (documented using WOCAT)

FMNR implementation approach
approaches

FMNR implementation approach [Kenya]

After consultations with local stakeholders, experts (from NEMA, ICRAF, KFS, Wildlife Kenya) and Homabay County Government representatives the FMNR approach is being introduced by World Vision through a public funded project. The aim of the approach is to promote FMNR and sustainable land and natural resource management through disseminating the …

  • Compiler: Thomas Kalytta

2. Description of the SLM Technology

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Senegal

Specify the spread of the Technology:
  • evenly spread over an area
If precise area is not known, indicate approximate area covered:
  • 1-10 km2
Is/are the technology site(s) located in a permanently protected area?

Nee

2.6 Date of implementation

If precise year is not known, indicate approximate date:
  • 10-50 years ago

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • as part of a traditional system (> 50 years)
  • during experiments/ research
  • through projects/ external interventions

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • improve production
  • reduce, prevent, restore land degradation
  • preserve/ improve biodiversity
  • adapt to climate change/ extremes and its impacts
  • mitigate climate change and its impacts

3.2 Current land use type(s) where the Technology is applied

Land use mixed within the same land unit:

Ja

Specify mixed land use (crops/ grazing/ trees):
  • Agroforestry

Cropland

Cropland

  • Annual cropping
Annual cropping - Specify crops:
  • cereals - maize
  • cereals - millet
  • oilseed crops - groundnuts
Annual cropping system:

Continuous maize/sorghum/millet

Number of growing seasons per year:
  • 1
Is intercropping practiced?

Nee

Is crop rotation practiced?

Ja

Grazing land

Grazing land

Extensive grazing:
  • Transhumant pastoralism
Animal type:
  • cattle - dairy and beef (e.g. zebu)
  • goats
  • sheep
Is integrated crop-livestock management practiced?

Ja

Products and services:
  • manure as fertilizer/ energy production

3.3 Has land use changed due to the implementation of the Technology?

Has land use changed due to the implementation of the Technology?
  • No (Continue with question 3.4)

3.4 Water supply

Water supply for the land on which the Technology is applied:
  • rainfed

3.5 SLM group to which the Technology belongs

  • agroforestry
  • area closure (stop use, support restoration)
  • integrated soil fertility management

3.6 SLM measures comprising the Technology

agronomic measures

agronomic measures

  • A1: Vegetation/ soil cover
  • A2: Organic matter/ soil fertility
vegetative measures

vegetative measures

  • V1: Tree and shrub cover

3.7 Main types of land degradation addressed by the Technology

soil erosion by water

soil erosion by water

  • Wt: loss of topsoil/ surface erosion
  • Wg: gully erosion/ gullying
soil erosion by wind

soil erosion by wind

  • Et: loss of topsoil
  • Ed: deflation and deposition
chemical soil deterioration

chemical soil deterioration

  • Cn: fertility decline and reduced organic matter content (not caused by erosion)
physical soil deterioration

physical soil deterioration

  • Pc: compaction
  • Pk: slaking and crusting
biological degradation

biological degradation

  • Bc: reduction of vegetation cover
  • Bh: loss of habitats
  • Bq: quantity/ biomass decline
  • Bs: quality and species composition/ diversity decline
  • Bl: loss of soil life
  • Bp: increase of pests/ diseases, loss of predators

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • reduce land degradation
  • restore/ rehabilitate severely degraded land

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

Date:

02/01/2023

4.2 General information regarding the calculation of inputs and costs

Specify how costs and inputs were calculated:
  • per Technology area
If relevant, indicate exchange rate from USD to local currency (e.g. 1 USD = 79.9 Brazilian Real): 1 USD =:

550.0

4.4 Costs and inputs needed for establishment

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Equipment None None 1.0 2000.0 2000.0 100.0
Equipment None None 1.0 1200.0 1200.0 100.0
Equipment None None 1.0 1000.0 1000.0 100.0
Total costs for establishment of the Technology 4200.0
Total costs for establishment of the Technology in USD 7.64

4.6 Costs and inputs needed for maintenance/ recurrent activities (per year)

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Equipment None None 1.0 2000.0 2000.0 100.0
Equipment None None 1.0 1200.0 1200.0 100.0
Equipment None None 1.0 1000.0 1000.0 100.0
Total costs for maintenance of the Technology 4200.0
Total costs for maintenance of the Technology in USD 7.64

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Agro-climatic zone
  • semi-arid

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
Indicate if the Technology is specifically applied in:
  • not relevant

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • coarse/ light (sandy)
Soil texture (> 20 cm below surface):
  • coarse/ light (sandy)
Topsoil organic matter:
  • low (<1%)

5.4 Water availability and quality

Ground water table:

> 50 m

Availability of surface water:

medium

Water quality (untreated):

good drinking water

Water quality refers to:

ground water

Is water salinity a problem?

Ja

Is flooding of the area occurring?

Ja

Regularity:

episodically

5.5 Biodiversity

Species diversity:
  • low
Habitat diversity:
  • low

5.6 Characteristics of land users applying the Technology

Sedentary or nomadic:
  • Sedentary
Market orientation of production system:
  • mixed (subsistence/ commercial)
Off-farm income:
  • > 50% of all income
Relative level of wealth:
  • poor
Individuals or groups:
  • individual/ household
Level of mechanization:
  • manual work
  • animal traction
Gender:
  • women
  • men
Age of land users:
  • youth
  • middle-aged

5.7 Average area of land used by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
  • medium-scale

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • communal/ village
  • individual, titled
Land use rights:
  • communal (organized)
  • individual
Are land use rights based on a traditional legal system?

Ja

5.9 Access to services and infrastructure

health:
  • poor
  • moderate
  • good
education:
  • poor
  • moderate
  • good
technical assistance:
  • poor
  • moderate
  • good
employment (e.g. off-farm):
  • poor
  • moderate
  • good
markets:
  • poor
  • moderate
  • good
energy:
  • poor
  • moderate
  • good
roads and transport:
  • poor
  • moderate
  • good
drinking water and sanitation:
  • poor
  • moderate
  • good
financial services:
  • poor
  • moderate
  • good

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

crop quality

decreased
increased

fodder production

decreased
increased

fodder quality

decreased
increased

animal production

decreased
increased

wood production

decreased
increased

forest/ woodland quality

decreased
increased

non-wood forest production

decreased
increased

risk of production failure

increased
decreased

product diversity

decreased
increased

production area

decreased
increased

land management

hindered
simplified
Income and costs

expenses on agricultural inputs

increased
decreased

farm income

decreased
increased

diversity of income sources

decreased
increased

Socio-cultural impacts

food security/ self-sufficiency

reduced
improved

community institutions

weakened
strengthened

SLM/ land degradation knowledge

reduced
improved

conflict mitigation

worsened
improved

situation of socially and economically disadvantaged groups

worsened
improved

Ecological impacts

Soil

soil moisture

decreased
increased

soil cover

reduced
improved

soil loss

increased
decreased

soil accumulation

decreased
increased

soil compaction

increased
reduced

nutrient cycling/ recharge

decreased
increased

soil organic matter/ below ground C

decreased
increased

acidity

increased
reduced
Biodiversity: vegetation, animals

Vegetation cover

decreased
increased

biomass/ above ground C

decreased
increased

plant diversity

decreased
increased

animal diversity

decreased
increased

beneficial species

decreased
increased

habitat diversity

decreased
increased

pest/ disease control

decreased
increased
Climate and disaster risk reduction

drought impacts

increased
decreased

emission of carbon and greenhouse gases

increased
decreased

wind velocity

increased
decreased

micro-climate

worsened
improved

6.2 Off-site impacts the Technology has shown

wind transported sediments

increased
reduced

damage on neighbours' fields

increased
reduced

impact of greenhouse gases

increased
reduced

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Gradual climate change

Gradual climate change
Season increase or decrease How does the Technology cope with it?
annual temperature increase well
seasonal temperature dry season increase well
annual rainfall decrease well
seasonal rainfall wet/ rainy season decrease well

Climate-related extremes (disasters)

Climatological disasters
How does the Technology cope with it?
drought well
Biological disasters
How does the Technology cope with it?
insect/ worm infestation well

Other climate-related consequences

Other climate-related consequences
How does the Technology cope with it?
reduced growing period well

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

positive

Long-term returns:

very positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

positive

Long-term returns:

very positive

6.5 Adoption of the Technology

  • 1-10%
Of all those who have adopted the Technology, how many did so spontaneously, i.e. without receiving any material incentives/ payments?
  • 0-10%

6.6 Adaptation

Has the Technology been modified recently to adapt to changing conditions?

Nee

7. References and links

7.1 Methods/ sources of information

  • field visits, field surveys
  • compilation from reports and other existing documentation
When were the data compiled (in the field)?

10/09/2022

Links and modules

Expand all Collapse all

Modules