Technologies

New SLM Technology [Philippines]

technologies_1321 - Philippines

Completeness: 61%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:

Philippines

SLM specialist:

Philippines

SLM specialist:

Philippines

SLM specialist:

Philippines

SLM specialist:

Philippines

SLM specialist:

Philippines

SLM specialist:
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Bureau of Soils and Water Management (Bureau of Soils and Water Management) - Philippines

1.3 Conditions regarding the use of data documented through WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Ja

2. Description of the SLM Technology

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Philippines

Specify the spread of the Technology:
  • evenly spread over an area
If precise area is not known, indicate approximate area covered:
  • < 0.1 km2 (10 ha)

2.6 Date of implementation

If precise year is not known, indicate approximate date:
  • less than 10 years ago (recently)

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • through land users' innovation

3. Classification of the SLM Technology

3.2 Current land use type(s) where the Technology is applied

Cropland

Cropland

  • Perennial (non-woody) cropping
Number of growing seasons per year:
  • 1
Grazing land

Grazing land

3.4 Water supply

Water supply for the land on which the Technology is applied:
  • rainfed

3.5 SLM group to which the Technology belongs

  • integrated crop-livestock management
  • integrated pest and disease management (incl. organic agriculture)

3.6 SLM measures comprising the Technology

agronomic measures

agronomic measures

  • A1: Vegetation/ soil cover
vegetative measures

vegetative measures

  • V2: Grasses and perennial herbaceous plants

3.7 Main types of land degradation addressed by the Technology

biological degradation

biological degradation

  • Bp: increase of pests/ diseases, loss of predators

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • reduce land degradation
  • restore/ rehabilitate severely degraded land

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

4.2 General information regarding the calculation of inputs and costs

If relevant, indicate exchange rate from USD to local currency (e.g. 1 USD = 79.9 Brazilian Real): 1 USD =:

47.5

4.4 Costs and inputs needed for establishment

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour None None 1.0 10.52 10.52 100.0
Plant material None None 1.0 3160.0 3160.0 100.0
Plant material None None 1.0 48.0 48.0 100.0
Construction material None None 1.0 397.89 397.89 100.0
Total costs for establishment of the Technology 3616.41

4.6 Costs and inputs needed for maintenance/ recurrent activities (per year)

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour None None 1.0 10.52 10.52 100.0
Total costs for maintenance of the Technology 10.52

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Specify average annual rainfall (if known), in mm:

2382.00

Agro-climatic zone
  • sub-humid

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
Indicate if the Technology is specifically applied in:
  • concave situations

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • medium (loamy, silty)
Topsoil organic matter:
  • medium (1-3%)

5.4 Water availability and quality

Availability of surface water:

good

Water quality (untreated):

for agricultural use only (irrigation)

5.5 Biodiversity

Species diversity:
  • medium

5.6 Characteristics of land users applying the Technology

Market orientation of production system:
  • subsistence (self-supply)
  • mixed (subsistence/ commercial)
Off-farm income:
  • 10-50% of all income
Relative level of wealth:
  • average
Individuals or groups:
  • individual/ household
Level of mechanization:
  • manual work
Gender:
  • men

5.7 Average area of land used by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
  • small-scale

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • individual, titled
Land use rights:
  • individual
Water use rights:
  • communal (organized)

5.9 Access to services and infrastructure

health:
  • poor
  • moderate
  • good
education:
  • poor
  • moderate
  • good
technical assistance:
  • poor
  • moderate
  • good
employment (e.g. off-farm):
  • poor
  • moderate
  • good
markets:
  • poor
  • moderate
  • good
energy:
  • poor
  • moderate
  • good
roads and transport:
  • poor
  • moderate
  • good
drinking water and sanitation:
  • poor
  • moderate
  • good
financial services:
  • poor
  • moderate
  • good

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

animal production

decreased
increased

product diversity

decreased
increased

land management

hindered
simplified
Income and costs

farm income

decreased
increased

diversity of income sources

decreased
increased

workload

increased
decreased
Other socio-economic impacts

Socio-cultural impacts

food security/ self-sufficiency

reduced
improved

health situation

worsened
improved

SLM/ land degradation knowledge

reduced
improved

conflict mitigation

worsened
improved

situation of socially and economically disadvantaged groups

worsened
improved

Ecological impacts

Water cycle/ runoff

water quantity

decreased
increased

water quality

decreased
increased

surface runoff

increased
decreased

excess water drainage

reduced
improved

groundwater table/ aquifer

lowered
recharge

evaporation

increased
decreased
Soil

soil moisture

decreased
increased

soil cover

reduced
improved

soil loss

increased
decreased

soil crusting/ sealing

increased
reduced

soil compaction

increased
reduced

nutrient cycling/ recharge

decreased
increased

salinity

increased
decreased

soil organic matter/ below ground C

decreased
increased
Biodiversity: vegetation, animals

invasive alien species

increased
reduced

pest/ disease control

decreased
increased
Climate and disaster risk reduction

fire risk

increased
decreased

wind velocity

increased
decreased

6.2 Off-site impacts the Technology has shown

downstream flooding

increased
reduced

buffering/ filtering capacity

reduced
improved

wind transported sediments

increased
reduced

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Gradual climate change

Gradual climate change
Season increase or decrease How does the Technology cope with it?
annual temperature increase not known

Climate-related extremes (disasters)

Meteorological disasters
How does the Technology cope with it?
local rainstorm not known
local windstorm not known
Climatological disasters
How does the Technology cope with it?
drought not well
Hydrological disasters
How does the Technology cope with it?
general (river) flood not known

Other climate-related consequences

Other climate-related consequences
How does the Technology cope with it?
reduced growing period not known

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

positive

Long-term returns:

very positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

positive

Long-term returns:

very positive

6.5 Adoption of the Technology

Of all those who have adopted the Technology, how many did so spontaneously, i.e. without receiving any material incentives/ payments?
  • 91-100%

7. References and links

7.1 Methods/ sources of information

Links and modules

Expand all Collapse all

Modules