Heavy grazing and trampling can lead to heavy degradation of pastureland. Shenako, Akhmeta Municipality. (Hanns Kirchmeir) # Remote Sensing as a Tool for Land Degradation Neutrality Monitoring (جورجيا) #### الوص 🛮 Land degradation contributes to biodiversity loss and the impoverishment of rural livelihoods in Tusheti. Above all, however, land degradation are triggered by climate change as traditional land use practise might not be adapted to new climate conditions which can cause or speed up degradation processes significantly. On the other hand, degraded land often leads to low biomass volumes and this reduces the ecosystem capability to stabilise local climate conditions. The concept of Land Degradation Neutrality (LDN) and the method of using remote sensing for monitoring land degradation are tools to identify the need for local planning processes. This showcase describes the LDN monitoring concept, national targets and the technology to assess indicators, mechanism and incentives for LDN. Purpose The continuing global degradation of land resources threatens food security and the functioning of ecosystem services by reducing or losing their biological or economic productivity. Unsustainable land-use practices such as deforestation, overgrazing and inappropriate agricultural management systems trigger the loss and degradation of valuable land resources in Georgia. These effects are visible in all countries of the South Caucasus. About 35% of the agricultural land in Georgia is severely degraded, 60% is of low to middle production quality. production quality. #### Land Degradation Neutrality (LDN) Land Degradation Neutrality (LDN) LDN is a new international concept to combat the ongoing degradation of valuable soil resources. The LDN concept was developed by the UNCCD to encourage countries to take measures to avoid, reduce or reverse land degradation, with the vision of achieving a zero-net loss of productive land. To combat land degradation in Georgia, in 2017, the national LDN Working Group set voluntary national targets to address specific aspects of LDN, and submitted them to the UNCCD Secretariat. To effectively set up counter measures to combat land degradation it is important to have detailed spatial information on land cover and land cover changes as well as on trends in degradation (like size of areas effected by erosion). Therefore a remote sensing toolset was developed and tested in the pilot are of Tusheti protected landscapes in the High Caucasus in Georgia. This region shows increasing soil erosion problems by uneven distribution of grazing activities and was selected for developing erosion control measures within the Integrated Biodiversity Management in the South Caucasus Program (IBiS) funded by the Deutsche Gesellschaft für internationale Zusammenarbeit (GIZ). Sensitivity Model The Integrated Biodiversity Management in the South Caucasus (IBiS) project in cooperation with national experts in Georgia, developed and applied a remote sensing toolset called "Erosion Sensitivity Model". This remote sensing toolset helps to assess the current state and the general erosion risk. The sensitivity model is based on the RUSLE – Revised Universal Soil Loss Equation. The tool allows the calculation of erosion caused by rainfall and surface runoff. The RUSLE equation incorporates a combination of different input factors such as precipitation (R), soil type (K), slope (LS), vegetation cover (C) and protection measures (P). In this way, the estimated average soil loss in tonnes per acre per year (A) can be calculated as follows: A = R * K * LS * C * P. The rainfall factor (R) results from a quotient from the monthly and annual mean value of precipitation. The data come from the data platform "CHELSA – Climatologies at high resolution for the earth's land surface areas". For the soil type factor (K), a soil map of 1:200,000 was taken. Then, depending on the soil type, different contents of sand, silt, loam and clay were used to calculate the K factor. The slope length and steepness factor (LS) is calculated from a digital elevation model (DEM) with a raster resolution of 10x10m. The DEM الموقع: Tusheti region, Akhmeta municipality, جورجیا عدد مواقع تنفيذ التقنيةالتي تم تحليلها: 2- 10 # المرجع الجغرافي للمواقع المختارة • 45.2009, 42.03922 • 45.63695, 42.3823 انتشار التقنية: منتشرة بالتساوي على مساحة (1000.0 km²) في منطقة محمية بشكل دائم؟: نعم تاريخ التنفيذ: 2016 #### نوع التقديم - من خلال ابتكار مساٍخدمي الأُراض كجزء من النظام التقليدي (> 50 ُعامًا) أثناء التجارب/الأبحاث - من خلال المشاريع/ التدخلات الخارجية ☑ is derived from the topographic map 1:25,000. The global elevation model derived from SRTM data (Shuttle Radar Topography Mission) has a resolution of 30x30 m and is available worldwide free of charge. The land cover factor (C) describes the vegetation cover that protects the soil from erosion. The vegetation cover slows down the speed of the raindrops and reduces the erosive effect of the rain. It slows down surface water runoff and stabilises the soil through root systems. The main indicators, land cover and productivity, can be assessed by remote sensing. The data from satellites need to be classified and calibrated by field data (ground truthing). The technology for the assessment of these indicators with Sentinel 2 satellite images was developed and applied in 2016 to 2018 in the Tusheti region (Akhmeta municipality) in the framework of the GIZ-IBIS project. Based on spectral information from airborne or satellite images, the density of the vegetation was calculated and mapped. There are well developed vegetation indices and classification systems to derive different land cover types and vegetation densities (mainly described by the Leaf Area Index LAI or biomass indices). The LAI is the area of the leaf surface (in square meters) per square meter land cover types and vegetation densities (mainly described by the Leaf Area Index LAI or biomass indices). The LAI is the area of the leaf surface (in square meters) per square meter ground surface. Since the real surface area of the leaves is hardly measurable, the amount of biomass is a proxy for the LAI. The P-factor is rarely considered in large-scale modelling of soil erosion risk as it is difficult to estimate it with very high accuracy. Therefore, to refine the model, a more detailed DEM (digital elevation model) is required (e.g., from satellite images). Based on the input factors, a soil erosion risk map was calculated for the whole territory of the Tusheti Protected Areas (113,660 ha). Based on the different spectral bands of the Sentinel 2 satellite image, a land cover map was calculated using the Support Vector Machine (SVM) technology and spectral image information. The results have been integrated in the development of pasture management plans ("pasture passports"). This maps and documents are indicating areas of high erosion risk that need to be excluded from grazing and the maximum number of livestock has been calculated based on the biomass maps and will be integrated into the lease contracts. the biomass maps and will be integrated into the lease contracts. The repetition of the remote sensing after some years (e.g. 5 years) will help to evaluate, if the measures in the pasture management have been successful to stop the degradation processes. Figure 1: Loss of arable land due to riverbed erosion, Alazani River (Hanns Kirchmeir) Figure 2: Pasture and soil erosion, Garabani municipality. Heavy grazing is reducing the vegetation cover and the top soil is exposed to wind and water erosion. (Hanns Kirchmeir) #### تصنيف الت∏يية #### الغرض الرئيا تحسين الإنتاج الحد من تدهور الأراضي ومنعه وعكسه الَّحْفاظُ علَى النظام البيئي حماية مستجمعات المياه / المناطق الواقعة في اتجاه مجرى النهر - مع تقٍنيات الحفاظ على/تحسين التنوع البيولوجي الحد من مخاطر الكوارث التكيف مع تغير المناخ/الظواهر المتطرفة وآثارها التخفيف من تغير المناخ وآثاره خلق أثر اقتصادي مفيد خلق أثر اجتماعيَّ مفيَّد provide information to make a spatial-territorial planning #### استخدام الأراضي استخدامات الأراضي مختلطة ضمن نفس وحدة الأرض: نعم - الرعي الزراعي (بما في ذلك الإدارة المتكاملة للمحاصيل والثروة الحيوانية) #### الأراضي الزراعية زراعة سنوية: الحبوب - الشعير, المحاصيل الجذرية/الدرنية - عدد مواسم الزراعة في السنة: 1 هل يتم ممارسة الزّراعة البينية؟: كلا هل تتم ممارسة تناوب المحاصيل؟: كلا #### أراضي الرعي الترحال الرعوي • نوع الحيوان: الماشية - لإنتاج الألبان واللحوم (على سبيل المثالَ الَّزِيبو), هل يتم تطبيق الإدارة المتكاملة للمحاصيل والثروة الحيوانية؟: كلا ## إمدادات المناه مختلط بعلي-مروي ري كامل rainfed and mixed rained-irrigation الغرض المتعلق بتدهور الأراضي منع تدهور الأراضي ☑ معالجة التدهور فقدان التربة السطحية/تآكل السطح :(Wt) وقدان التربة بالمياه - الوزن, الانجراف الخلجاني/ الخلجان:(Wg) تراص التربة : (Pc) - **التدهور المادي أو الفيزيائي للتربة** انخفاض الكمية/ (Bq): ,تناقص الغطاء النباتي :(Bc) - التدهور البيولوجي الكتلة الحيوية #### مجموعة الإدارة المستدامة للاراضي - الرعي وإدارة المراعي • - تحسين الغطاء الأرضي/النباتي #### تدابير الإدارة المستدامة للأراضي تغيير في مستوى الإدارة/الكثافة :M2 - **التدابير الإدارية** lt is a monitoring technology to evaluate land - تدابير أخرى management activities. #### المواصفات الفنية Map of erosion hot spots (pink colour) and the location of field sample plots for evaluation and ground truthing. Map of land cover classification derived from satellite images. The different grassland types are classified by their biomass as an indicator of productivity and current state. Repeating the satellite image classification with the same parameters after 5 or 10 years can give a clear picture of changes in the land cover. Author: Hanns Kirchmeir #### التأسيس والصيانة: الأنشطة والمدخلات والتكاليف #### حساب المدخلات والتكاليف - وحدة الحجم) يتم حساب التكاليف: حسب مساحة تنفيذ التقنية (km2 والمساحة:1000 - USD العملة المستخدمة لحساب التكلفة: دولار أمريكي - سعر الصرف (بالدولار الأمريكي): 1 دولار أمريكي = غير متاح - متوسط تكلفة أجر العمالة المستأجرة في اليوم: 100 • #### أهم العوامل المؤثرة على التكاليف Field sample collection; Remote sensing experts. ## أنشطة التأسيس - (التوقيت/الوتيرة: 2017) National level. Baseline: Field assessment for remote sensing calibration (1x/20 years). - (التوقيت/الوتيرة: 2017) (Sentinel satellite image classification (multi temporal data from 2017) (2017 - 3. Statistical data from GEOSTAT Agricultural census (2016-2014 [التوقيت/الوتيرة: 4016-2016] - (التوقيت/الوتيرة: 2003 2006) Analysis of soil carbon content from existing profiles - years intervals) التوقيت/الوتيرة: 5. Conduct ongoing monitoring (5 - 6. Update sentinel satellite image classification (1 التوقيت/الوتيرة: 1) x year - 7. Update statistical data from GEOSTAT Agricultural census (4 :التوقيت/الوتيرة x/year) - (x/5 years)التوقيت/الوتيرة: 8. Resampling of soil carbon content near existing profiles - 9. Municipal level. Spatial planning: Assessment of current stage of land degradation, anticipated gains and losses (1 التوقيت/الوتيرة: 1/ 10 years) - 10. Revision of spatial planning on Municipal level. (1 :التوقيت/الوتيرة / 2 x / 5 years) (per 1000 km2) مدخلات وتكاليف التأسيس | تحديد المدخلات | الوحدة | الكمية | التكاليف لكل
دولار) وحدة
(USD أمريكي | إجمالي
التكاليف لكل
دولار) مدخل
(USD أمريكي | من التكاليف %
التي يتحملها
مستخدمو
الأراضي | |--|-------------|--------|--|--|---| | العمالة | | | | | | | Remote Sensing analysis by Sentinel Satellite data | person days | 50,0 | 200,0 | 10000,0 | | | Collecting field data for satellite image callibration | person days | 40,0 | 200,0 | 8000,0 | | | Soil sampling (for carbon content) | person days | 20,0 | 200,0 | 4000,0 | | | Including results in spatial planning | person days | 10,0 | 200,0 | 2000,0 | | | إجمالي تكاليف إنشاء التقنية | | | | | | | إجمالي تكاليف إنشاء التقنية بالدولار الأمريكي | | | | | | #### أنشطة الصبانة - 1. Repeating the application of the calibrated remote sensing model for monitoring repitition (التوقيت/الوتيرة: with 5 years interval) - 2. Repetition of soil samples for assessing soil carbon content (التوقيت/الوتيرة: with 5 years interval) - 3. Analysing the results and integrate them in spatial planning and policy making (التوقيت/الوتيرة: with 5 years interval) II + IIC ... N - . (nor 1000 km 2) | تحديد المدخلات | الوحدة | الكمية | التكاليف لكل
دولار) وحدة
(USD أمريكي | إجمالي
التكاليف لكل
دولار) مدخل
(USD أمريكي | من التكاليف %
التي يتحملها
مستخدمو
الأراضي | | | |--|-------------|--------|--|--|---|--|--| | العمالة | | | | | | | | | Applying the calibrated remote sensing model for monitoring repetition | person days | 20,0 | 200,0 | 4000,0 | | | | | Repetition of soil samples for assessing soil carbon content | person days | 10,0 | 200,0 | 2000,0 | | | | | Analysing results and integrating in spatial planning | person days | 10,0 | 200,0 | 2000,0 | | | | | إجمالي تكاليف صيانة التقنية | | | | | | | | | إجمالي تكاليف صيانة التقنية بالدولار الأمريكي | | | | | | | | #### المناخ الطبيعي #### المنطقة المناخية الزراعية متوسط هطول الأمطار السنوي - مم 250 > ملم 500 -251 - ملم 750 501 - ملم 751-1,000 ملم 1,500-1,100 - ملم 2,000-1,500 ملم 2,001-3,000 - ملم 3,100 ملم - ملم 4000 > - رطبة - شبه رطبة 🗸 شبه قاحلة 🗸 - قاحلة ### المواصفات الخاصة بالمناخ متوسط هطول الأمطار السنوي بالملليمتر: 800.0 The climate is generally suitable for agriculture with an annual precipitation of up to 800 mm, with hot and humid springs, rainfall peaks in May and June with hot and dry summers. #### المنحدر - مسطح (2-0%) بسیط (3-5%) - معتدل (6-10%) - متدحرج (11-15%) تلال (30-16%) - شديدة الانحداّر(31-60%) 🗸 فائقة الانحدار (>60%) #### التضاريس - هضاب/سهول أثلام مرتفعة 🔽 - المنحدرات الجبلية 🗸 - منحدرات التلال منحدرات في السفوح قاع الوادي #### الارتفاع - متر فوق سطح البحر 0-100 متر فوق سطح البحر 101-500 - متر فوق سطح البحر 50ً1-1,000 متر فوق سطح 1,500-1,001 - البحر - البحب - متر فوق سطح 2,100-2,500 🔽 البحر - متر فوق سطح 2,501-3,000 البحر البحر البحر متر فوق سطح 3,001-4,000 - البحر متر فوق سطح البحر 4000 < #### يتم تطبيق التقنية في - حالات محدبة أو نتؤات حالات مقعرة - غير ذات صلة 🗸 عمق التربة ضحل جدًا (0-20 سم) صحلة (21-50 سم) 🔽 متوسطً (طميي، سُلتيّ) 🗸 قوام التربة (> 20 سم تحت السطح) محتوى المادة العضوية في التربة السطحية The monitoring technology was applied for the first time to draw a baseline. Based on the results, activities have been planned and pilot measures have been implemented (exclusion from grazing, reforestation, regulation of grazing intensity). Future replications of the monitoring will show changes and evaluate success of measures. The technologies to control erosion are described separately in the WOCAT database (Community-based Erosion Control [Azerbaijan]; Pasture-weed control by thistle cutting [Georgia]; High-altitude afforestation for erosion control [Armenia]; Slope erosion control using wooden pile walls [Armenia]). The costs of the remote sensing approach have not been invested by the land owners but by GIZ and the Ministry. Therefore there are no direct negative impact caused by the investment. The maintenance will be covered by public authorities as well. The positive impact for the land users are the clearly delineated pasture unit giving the exact area of grassland and the accessible amount of fodder biomass. By this, the lease-rate can be found according to the productivity and the number of livestock can be adapted to the carrying capacity of the land within the lease contract. #### تغير المناخ تغير مناخ تدريجي هطول الأمطار الموسمية انخفاض جيدة جدا 🔽 ل جيدا على الاطلاق الموسم: الصيف التبنى والتكيف من بين جميع الذين تبنوا التقنية، كم منهم فعلوا ذلك دون تلقي نسبة مستخدمي الأراضي في المنطقة الذين تبنوا التقنية حالات فردية/تجريبية أي حوافز مادية؟ 10-0% 11-50% 11-50% > 50% 51-90% 91-100% #### عدد الأسر المعيشية و/أو المساحة المغطاة The technology is desigend to be applied by national or regional addministrations and not by land owners themselves. # هل تم تعديل التقنية مؤخرًا لتتكيف مع الظروف المتغيرة؟ نعم كلا مع أي من الظروف المتغيرة؟ مع أي من الظروف المتغيرة تغير المناخ / التطرف الأسواق المتغيرة توفر العمالة (على سبيل المثال بسبب الهجرة) #### الاستنتاحات والدروس المستفادة #### نقاط القوة: وجهة نظر مستخدم الأرض The monitoring technology can help to find erosion and degradation hot spots and based on this spatial information counter measures can be applied to save the productivity of land. As the income from agricultural activities and livestock breeding is of high priority in this pilot region, the protection of the productivity of land is of high importance to the local land users. #### نقاط القوة: وجهة نظر جامع المعلومات أو غيره من الأشخاص الرئيسيين لمصدر المعلومات The presented remote sensing technologies are a cost efficient and objective way to monitor land degradation and land use changes on large areas on long time periods. Based on this spatial data, land use regulations can be integrated in spatial planning and other legal and practical frameworks (e.g. pasture lease contracts) to counter act the degradation processes. The success of the measures and the development of degradation and rehabilitation can be monitored by the same toolset. #### نقاط الضعف / المساوىء / المخاطر: وجهة نظر مستخدم الأرضكيفية التغلب عليها The technology is complex and cannot be applied by the land user her-/himself and is sometimes hard to understand. Therefore they might mistrust in the results and are not eager to accept regulations and measures to stop degradation. Transparent documentation of the technology and regular field visits to evaluate together with the land owners and users the remote sensing results in the field. #### نقاط الضعف / المساوىء / المخاطر: وجهة نظر جامع المعلومات أو غيره من الأشخاص الرئيسيين لمصدر المعلوماتكيفية التغلب عليها - The institutional setup on the national level for the regular application of the remote sensing technology and the storage and management of the monitoring data is not established yet. GIS, remote sensing and soil experts are of limited availability. Institutional capacity building and academic training courses provided at the Georgian universities can help to overcome these limitations - Field data for calibration of satellite images (biomass volumes, classified land cover types, soil types, land management types) with exact information on the spatial location are rare and costly to be created. Such data and information should be organised and gathered on national level across different sectors (agriculture, forestry, spatial planing, nature conservation ...). This would help to reduce significantly the costs and remote sensing could be applied on much larger areas. جامع المعلومات Hanns Kirchmeir المحررون Natia Kobakhidze Christian Goenner المُراجع اخر تحديث: 31 أغسطس، 2020 Rima Mekdaschi Studer تاريخ التوثيق: 23 أغسطس، 2019 الأشخاص الرئيسيين لمصدر المعلومات متخصص في الإدارة المستدامة للأراضي - Hanns Kirchmeir جامع المعلومات المشارك - Natia Kobakhidze جامع المعلومات المشارك - Giorgi Mikeladze WOCAT <mark>الوصف الكامل في قاعدة بيانات</mark> https://qcat.wocat.net/ar/wocat/technologies/view/technologies_5488/ بيانات الإدارة المستدامة للأراضي المرتبطة Approaches: Integrated Pasture Management Planning in Mountainous Regions https://qcat.wocat.net/ar/wocat/approaches/view/approaches_5490/ Approaches: Land Degradation Neutrality Transformative Projects and Programmes (LDN-TPP) for sustainable agriculture and rural development https://qcat.wocat.net/ar/wocat/approaches/view/approaches_5902/ #### تم تسهيل التوثيق من قِبَل المؤسسة • Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) المشروع • Integrated Biodiversity Management, South Caucasus (IBiS) #### المراجع الرئيسية • Land Degradation Neutrality 25.10.2017: https://e-c-o.at/files/publications/downloads/D00813_ECO_policy_brief_LDN_Georgia_171025.pdf #### روابط للمعلومات ذات الصلة المتوفرة على الإنترنت - Tools for satellite image analysis: http://step.esa.int/main/snap-2-0-out-now/ - UNCCD Good Practice Guidance on SDG Indicator 15.31. (Sims et al. 2017): https://www.unccd.int/sites/default/files/relevant-links/2017-10/Good%20Practice%20Guidance_SDG%20Indicator%2015.3.1_Version%201.0.pdf This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0 International