

Ploughing on the conventional plots (Balázs Madarász)

Conventional (contour-line and ploughing) tillage (Hungary)

Hagyományos (szintvonalas és szántásos) müvelés (Hungarian)

DESCRIPTION

Conventional (contour-line and ploughing) tillage

The basis of the technology is the annual autumn ploughing. The ploughing and all other cultivation is carried out parallel to the contour lines. This way the erosion can be significantly decreased. The rotational cultivation aims at the reduction of the areal and fluvial erosion, at the repulsion of the weeds and at the attainment of the ideal state of the seedbed at the time of sowing. It is applicable anywhere bellow a certain slope angle. The only restriction is the excessively thin parcel structure. Special education and investment are not required, it can be realised by the available instruments.

Location: Zala county, Zala hills, Zala, Zala county, Hungary

No. of Technology sites analysed:

Geo-reference of selected sites 17.0544, 46.678

Spread of the Technology: evenly spread over an area (0.1963 km²)

In a permanently protected area?:

Date of implementation: more than 50 years ago (traditional)

Type of introduction

- through land users' innovation
- as part of a traditional system (> 50 years) ✓ during experiments/ research
- through projects/ external interventions

CLASSIFICATION OF THE TECHNOLOGY

Main purpose

improve production reduce, prevent, restore land degradation 1 conserve ecosystem

protect a watershed/ downstream areas - in combination with other Technologies preserve/ improve biodiversity

Land use

Cropland Annual cropping: cereals - maize, cereals - wheat (winter) Number of growing seasons per year: 1 Is crop rotation practiced? Yes

reduce risk of disasters
 adapt to climate change/ extremes and its impacts
 mitigate climate change and its impacts
 create beneficial economic impact
 create beneficial social impact

Purpose related to land degradation

1

prevent land degradation reduce land degradation restore/ rehabilitate severely degraded land adapt to land degradation not applicable

Water supply

rainfed
 mixed rainfed-irrigated
 full irrigation

Degradation addressed

TI-ST.

soil erosion by water - Wt: loss of topsoil/ surface erosion, Wg: gully erosion/ gullying, Wm: mass movements/ landslides

physical soil deterioration - Pc: compaction

SLM group

- rotational systems (crop rotation, fallows, shifting cultivation)
- minimal soil disturbance

SLM measures

agronomic measures - A1: Vegetation/ soil cover, A3: Soil surface treatment

TECHNICAL DRAWING

Technical specifications

ESTABLISHMENT AND MAINTENANCE: ACTIVITIES, INPUTS AND COSTS

Calculation of inputs and costs

- Costs are calculated:
- Currency used for cost calculation: Hungarian Forint
- Exchange rate (to USD): 1 USD = 195.8 Hungarian Forint
- Average wage cost of hired labour per day: 25.50

Establishment activities

n.a.

Maintenance activities

1. ploughing (Timing/ frequency: autumn / annualy)

NATURAL ENVIRONMENT

Average annual rainfall

- < 250 mm
 251-500 mm
 501-750 mm 751-1,000 mm 1,001-1,500 mm
 1,501-2,000 mm
 2,001-3,000 mm
 3,001-4,000 mm
 > 4,000 mm
- Agro-climatic zone humid ✓ sub-humid semi-arid

arid

Specifications on climate Average annual rainfall in mm: 650.0

Slope Landforms Altitude Technology is applied in 0-100 m a.s.l. convex situations flat (0-2%) plateau/plains gentle (3-5%) 101-500 m a.s.l. concave situations ridges 1 moderate (6-10%) 501-1,000 m a.s.l. mountain slopes not relevant 1 rolling (11-15%) hill slopes 1,001-1,500 m a.s.l. 1 1 hilly (16-30%) 1,501-2,000 m a.s.l. footslopes 2,001-2,500 m a.s.l. steep (31-60%) valley floors very steep (>60%) 2,501-3,000 m a.s.l. 3,001-4,000 m a.s.l. > 4,000 m a.s.l. Soil depth Soil texture (topsoil) Soil texture (> 20 cm below Topsoil organic matter content very shallow (0-20 cm) coarse/ light (sandy) high (>3%) surface) medium (1-3%) shallow (21-50 cm) medium (loamy, silty) 1 coarse/ light (sandy) 1 moderately deep (51-80 cm) fine/ heavy (clay) low (<1%) medium (loamy, silty) deep (81-120 cm) fine/ heavy (clay) very deep (> 120 cm) Availability of surface water Groundwater table Water quality (untreated) Is salinity a problem? on surface good drinking water Yes excess poor drinking water < 5 m good No 5-50 m medium (treatment required) > 50 m poor/ none for agricultural use only Occurrence of flooding (irrigation) unusable Yes No

Most important factors affecting the costs compacted soil surface> chiselling (loosening); steep slops>more fuel; nutrient supply>expensive inorganic fertilizers

Species diversity Habitat diversity high high medium medium low low CHARACTERISTICS OF LAND USERS APPLYING THE TECHNOLOGY Market orientation Off-farm income Relative level of wealth Level of mechanization less than 10% of all income manual work subsistence (self-supply) very poor mixed (subsistence/ 10-50% of all income poor animal traction commercial) > 50% of all income average mechanized/ motorized \checkmark 🗸 rich commercial/ market 1 very rich Sedentary or nomadic Individuals or groups Gender Age children individual/ household women Sedentary Semi-nomadic groups/ community men youth Nomadic cooperative middle-aged employee (company, elderly government) Area used per household Scale Land ownership Land use rights < 0.5 ha small-scale open access (unorganized) state 0.5-1 ha medium-scale communal (organized) company 1-2 ha large-scale communal/ village leased 🗸 individual 2-5 ha group 5-15 ha individual, not titled Water use rights 15-50 ha 🔽 individual, titled 1 open access (unorganized) 50-100 ha \checkmark communal (organized) 100-500 ha

Access to services and infrastructure

500-1,000 ha

1,000-10,000 ha > 10,000 ha

IMPACTS					
Socio-economic impacts					
Crop production	decreased increased				
farm income	decreased				
Socio-cultural impacts					
SLM/ land degradation knowledge	reduced reduced improved				
Ecological impacts					
soil loss	increased decreased				
soil fertility	decreased view increased				
Off-site impacts					
downstream flooding (undesired)	increased 🖌 🖌 🖌 reduced				
downstream siltation	increased decreased				
groundwater/ river pollution	increased reduced				
COST-BENEFIT ANALYSIS					
Benefits compared with establishment costs					
Short-term returns	very negative very positive				
Long-term returns	very negative very positive				
Benefits compared with maintenance costs					
Short-term returns	very negative				
Long-term returns	very negative very positive				

CLIMATE CHANGE

ADOPTION AND ADAPTATION

Percentage of land users in the area who have adopted the Technology

single cases/ experimental 1-10%

Of all those who have adopted the Technology, how many have done so without receiving material incentives?

leased

individual

0-10%
11-50%

conditions? Yes No

Number of households and/ or area covered 1 household

labour availability (e.g. due to migration)

CONCLUSIONS AND LESSONS LEARNT

Strengths: compiler's or other key resource person's view

To which changing conditions? climatic change/ extremes changing markets

Strengths: land user's view • production increase

• no investment necessary

• decreased soil erosion

 decreased soil erosion production increase

Has the Technology been modified recently to adapt to changing

International			
---------------	--	--	--

This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0

Editors

no investment necessary •

REFERENCES

Compiler Ádám Kertész

.

Date of documentation: June 2, 2011

Resource persons Ádám Kertész - SLM specialist Balazs Madarasz - SLM specialist Béla Csepinszky - SLM specialist

Full description in the WOCAT database https://qcat.wocat.net/en/wocat/technologies/view/technologies_1081/

Linked SLM data

Approaches: Conventional (contour-line and ploughing) tillage https://qcat.wocat.net/en/wocat/approaches/view/approaches_2650/

Documentation was faciliated by

Institution

• Geographical Research Institute, Hungarian Academy of Sciences (MTA CSFK) - Hungary

Project

• Soil and water protection (EU-SOWAP)

Weaknesses/ disadvantages/ risks: land user's viewhow to overcome

Weaknesses/ disadvantages/ risks: compiler's or other key resource person's viewhow to overcome

Reviewer David Streiff

Alexandra Gavilano

 (\mathbf{c}) (\mathbf{i}) (\mathbf{s}) $(\mathbf{0})$