

A constructed retention ditch in lower Mbeere South District (Paul Kahiga (P.O.Box 8444-00300 Nairobi))

Retention ditches (Kenya)

Mitaro ya ruji (Mbeere)

DESCRIPTION

Retention ditches, also called infiltration ditches, are larger ditches designed to catch and retain all incoming runoff for infiltration into the soil.

Retention ditches, also called infiltration ditches, are larger ditches designed to catch and retain all incoming runoff for infiltration into the soil. They operate like contour furrows, increasing the supply of water made available to crops planted in and adjacent the ditch, while also reducing soil erosion. However, they handle much more water. Retention ditches are in essence water harvesting and conservation structures

Purpose of the Technology: They are commonly used as an alternative to diversion ditches if there is no places to discharge runoff or if there is a need , as in semi –arid areas , to harvest water , e.g. for bananas.

Establishment / maintenance activities and inputs: When constructing the ditches, the soil is thrown to the lower side to form an embankment that prevents soil from falling back in. This structure can be stabilized further by planting grass on it. On soils with lower infiltration rate, or on slopes, the ends can be left open to allow excess water to drain out.

Natural / human environment: Retention ditches are normally constructed on relatively flat areas with closed ends and wide and deep enough to hold all the runoff expected. They are often found on steep slopes in humid area under small scale farming where there is no opportunity to discharge runoff to a waterway. Retentions ditches can be useful where soils are permeable, deep and stable. However, retention ditches are not recommended for areas with shallow soil, those prone to land slides or where soil salinity is a possibility. LOCATION

Location: Mbeere, Eastern, Kenya

No. of Technology sites analysed:

Geo-reference of selected sites • 37.79303, -0.57942

Spread of the Technology: evenly spread over an area (approx. < 0.1 km2 (10 ha))

In a permanently protected area?:

Date of implementation: 10-50 years ago

Type of introduction

- through land users' innovation
 - as part of a traditional system (> 50 years) during experiments/ research
- through projects/ external interventions

A portrait view of a retention ditch showing replenished bananas (Paul Kahiga (8444-00300 Nairobi))

CLASSIFICATION OF THE TECHNOLOGY

Main purpose

- improve production
 reduce, prevent, restore land degradation
 - conserve ecosystem protect a watershed/ downstream areas – in combination with other Technologies
- preserve/ improve biodiversity
- reduce risk of disasters
- adapt to climate change/ extremes and its impacts
- mitigate climate change and its impactscreate beneficial economic impact
- create beneficial social impact

Purpose related to land degradation

- prevent land degradation
- reduce land degradation
- restore/ rehabilitate severely degraded land adapt to land degradation not applicable

SLM group

- water harvesting
- irrigation management (incl. water supply, drainage)
- water diversion and drainage

TECHNICAL DRAWING

Technical specifications

Land use

CroplandAnnual cropping

Perennial (non-woody) cropping: banana/plantain/abaca

Water supply

- rainfedmixed rainfed-irrigated
- full irrigation

Degradation addressed

water degradation - Hs: change in quantity of surface water

SLM measures

structural measures - S4: Level ditches, pits

A technical drawing showing a retention ditch. The run-off ponds within the ditch giving it time to infiltrate.

Location: Ntharawe. Eastern Province Date: 27/10/2012

Technical knowledge required for field staff / advisors: moderate (In implement this technology the farmers collaborates with an Agriculture extension officer in order to assist in making the retention ditches.)

Technical knowledge required for land users: low (Water scarcity triggers farmers to look for better means of soil conservation and retention ditch plays an important role to satisfy crop water requirement.)

Main technical functions: control of concentrated runoff: retain / trap, increase of infiltration

Secondary technical functions: control of concentrated runoff: impede / retard, reduction of slope angle

Retention/infiltration ditch/pit, sediment/sand trap Vertical interval between structures (m): 6 Spacing between structures (m): 30 Depth of ditches/pits/dams (m): 0.5 Width of ditches/pits/dams (m): 0.5 Length of ditches/pits/dams (m): 50 Height of bunds/banks/others (m): 0.5 Length of bunds/banks/others (m): 0.5

Author: Paul Kahiga, 8444-00300 Nairobi

Most important factors affecting the costs

assist in laying down of the contours

slope of the land, labour and availability of a technical person to

ESTABLISHMENT AND MAINTENANCE: ACTIVITIES, INPUTS AND COSTS

Calculation of inputs and costs

- Costs are calculated:
- Currency used for cost calculation: Kshs
- Exchange rate (to USD): 1 USD = 100.0 Kshs
- Average wage cost of hired labour per day: 5.00

Establishment activities

- 1. Clearing of vegetation (Timing/ frequency: before the rain starts)
- 2. Marking contours (Timing/ frequency: After vegetation clearance)
- 3. Digging the ditches (Timing/ frequency: after marking the contours)

Establishment inputs and costs

Specify input	Unit	Quantity	Costs per Unit (Kshs)	Total costs per input (Kshs)	% of costs borne by land users	
Labour						
Labour	ha	1.0	80.0	80.0	100.0	
Equipment						
Tools	ha	1.0	50.0	50.0	100.0	
Total costs for establishment of the Technology				130.0		
Total costs for establishment of the Technology in USD				1.3		

Maintenance activities

1. Removal of excess sediments (Timing/ frequency: once after rainy season)

Maintenance inputs and costs

Specify input	Unit	Quantity	Costs per Unit (Kshs)	Total costs per input (Kshs)	% of costs borne by land users	
Labour						
Labour	ha	1.0	45.0	45.0	100.0	
Equipment						
Tools	ha	1.0	35.0	35.0	100.0	
Total costs for maintenance of the Technology						
Total costs for maintenance of the Technology in USD				0.8		

NATURAL ENVIRONMENT

Average annual rainfall

< 250 mm 251-500 mm 501-750 mm Agro-climatic zone humid sub-humid semi-arid **Specifications on climate** Thermal climate class: tropics

✓ 751-1,000 mm 1,001-1,500 mm 1,501-2,000 mm 2,001-3,000 mm 3,001-4,000 mm > 4,000 mm	arid		
Slope flat (0-2%) ✓ gentle (3-5%) moderate (6-10%) rolling (11-15%) hilly (16-30%) steep (31-60%) very steep (>60%)	Landforms plateau/plains ridges mountain slopes ✓ hill slopes footslopes valley floors	Altitude 0-100 m a.s.l. 101-500 m a.s.l. 501-1,000 m a.s.l. ✓ 1,001-1,500 m a.s.l. 1,501-2,000 m a.s.l. 2,001-2,500 m a.s.l. 2,501-3,000 m a.s.l. 3,001-4,000 m a.s.l. > 4,000 m a.s.l.	Technology is applied in convex situations concave situations not relevant
Soil depth very shallow (0-20 cm) ✓ shallow (21-50 cm) ✓ moderately deep (51-80 cm) deep (81-120 cm) very deep (> 120 cm)	Soil texture (topsoil) coarse/ light (sandy) medium (loamy, silty) fine/ heavy (clay)	Soil texture (> 20 cm below surface) coarse/ light (sandy) medium (loamy, silty) fine/ heavy (clay)	Topsoil organic matter content high (>3%) medium (1-3%) ✓ low (<1%)
Groundwater table on surface < 5 m ✓ 5-50 m > 50 m	Availability of surface water excess good medium poor/ none	 Water quality (untreated) good drinking water poor drinking water (treatment required) for agricultural use only (irrigation) unusable Water quality refers to: 	Is salinity a problem? Yes No Occurrence of flooding Yes No
Species diversity high medium low	Habitat diversity high medium low		
CHARACTERISTICS OF L/	AND USERS APPLYING THE	TECHNOLOGY	
Market orientation subsistence (self-supply) mixed (subsistence/ commercial) commercial/ market	Off-farm income ✓ less than 10% of all income 10-50% of all income > 50% of all income	Relative level of wealth very poor poor average rich very rich	Level of mechanization manual work animal traction mechanized/ motorized
Sedentary or nomadic Sedentary Semi-nomadic Nomadic	Individuals or groups individual/ household groups/ community cooperative employee (company, government)	Gender women ✓ men	Age children youth middle-aged elderly
Area used per household < 0.5 ha 0.5-1 ha 1-2 ha 2-5 ha 5-15 ha 15-50 ha 50-100 ha 100-500 ha 500-1,000 ha 1,000-10,000 ha > 10,000 ha	Scale small-scale medium-scale large-scale	Land ownership state company communal/ village group individual, not titled individual, titled	Land use rights open access (unorganized) communal (organized) leased ✓ individual Water use rights open access (unorganized) communal (organized) leased ✓ individual
Access to services and infrastruchealth	poor good		
	hon Boog		
IMPACTS Socio-economic impacts			
Crop production risk of production failure land management	increased de de	creased ecreased mplified	

hindered 🖌 💦 🚺 simplified

farm income	decreased 🖌 🖌	increased
Socio-cultural impacts food security/ self-sufficiency SLM/ land degradation knowledge Improved livelihoods and human well-being	reduced	improved improved increased
Ecological impacts harvesting/ collection of water (runoff, dew, snow, etc) soil moisture pest/ disease control	decreased	improved increased waterborne pests
Off-site impacts damage on neighbours' fields	increased	reduced
COST-BENEFIT ANALYSIS		
Benefits compared with establishme Short-term returns Long-term returns	very negative	very positive very positive
Benefits compared with maintenance Short-term returns Long-term returns	very negative	very positive very positive
CLIMATE CHANGE		
Gradual climate change annual temperature increase Climate-related extremes (disasters) drought		very well
ADOPTION AND ADAPTATIC	N	
Percentage of land users in the area Technology single cases/ experimental 1-10% 11-50% > 50%	who have adopted the	Of all those who have adopted the Technology, how many have done so without receiving material incentives? 0-10% 11-50% 51-90% 91-100%
Has the Technology been modified reconditions? Yes No To which changing conditions? climatic change/ extremes changing markets labour availability (e.g. due to migra		3

CONCLUSIONS AND LESSONS LEARNT

Strengths: land user's view

Strengths: compiler's or other key resource person's view

- Retains runoff and improves soil moisture
- It is a water harvesting technology for crops in dry areas
- Reduces soil erosion by wind

Weaknesses/ disadvantages/ risks: land user's viewhow to overcome

Weaknesses/ disadvantages/ risks: compiler's or other key resource person's viewhow to overcome

- Prevents movement of machinery within the farms leave some passages that can allow movement of machinery within the farm.
- The retained water can habour mosquitoes and other water borne pests Spraying with appropriate insecticides.
- labour intensive to construct and to maintain
- Regular maintenance of the ditches.

REFERENCES			
Compiler Paul Kahiga	Editors	Reviewer Fabian Ottiger Alexandra Gavilano	
Date of documentation: Feb. 19, 201	5 L	ast update : May 7, 2019	
Resource persons Paul Kahiga - SLM specialist Mwangi Gathenya - SLM specialist Patrick Home - SLM specialist Timothy Chege - SLM specialist Abamba Omwange - SLM specialist Baobab Kimengich - SLM specialist Jane Wamuongo - SLM specialist Andrew Karanja - SLM specialist Sara Namirembe - SLM specialist			
Full description in the WOCAT data https://qcat.wocat.net/en/wocat/tech			
Linked SLM data n.a.			
Documentation was faciliated by			
 Institution International Centre for Research Jomo Kenyatta University (Jomo K KARI Headquarters (KARI Headqua Project n.a. 	enyatta University) - Kenya		
This work is licensed under Cre International	eative Commons Attribution-No	onCommercial-ShareaAlike 4.0	© († § ()