

Farm in Matalom, Leyte with corn (already harvested) and relayed sweet potato (Engr. Jemar G. Raquid (Bureau of Soils and Water Management))

Sweet Potato Relay Cropping (Philippines)

Lapat System

DESCRIPTION

A farmer's indigenous practice of growing sweet potato as a relay crop to its main crop of either rice or corn.

It is the planting of sweet potato together with rice/corn on the same area, hence, maximizing the area for crop production. Specifically, a local sweet potato variety called "mayaman" is planted one to two months after planting rice/corn and is being cultivated in the field in between the rows of the above-mentioned main crop. The "mayaman" variety is selected by the farmers due to its excellent food quality and ability to produce more roots at its vine, enabling staggered harvesting and extending period of utilization. However, in some instances, rice and corn were planted at the same time.

Purpose of the Technology: The main purpose of using creeping type of sweet potato is to provide cover to the soil which addresses soil moisture conservation primarily during growing period and after main crop harvesting time. It also protects the soil against erosion. Moreover, it provides additional and alternative food source for the farmers, in case the main crop fails due to some reasons.

Establishment / maintenance activities and inputs: The main crop, either corn or rice, is planted first with a specified planting distance--75cm between rows and 75cm between hills with 2 to 3 seeds per hill (for corn) and 30cm between rows and 20cm between hills with 5 to 6 seeds per hill (for rice). After one month, the sweet potato cuttings are planted in between rows of the main crop at a distance of 1.5m between hills.

Natural / human environment: This relay cropping system is locally known as "lapat" in the areas of Matalom and Bato, Southern Leyte where it is commonly practiced. The soil in these areas is characterized as mostly acid soil. Whereas, its topography is generally comprises from rolling to steep hills. In terms of climate, rainfall is more or less evenly distributed throughout the year and typhoons usually occur during the months of October or November. In addition, most of local farmers cultivated 1 to 2 parcels with farm size from 0.12 to 5.95 hectares with farming as the principal source of livelihood and income. The fields ot the farms are basically rainfed because it is totally dependent on rainfall as water supply for irrigation.

LOCATION

Location: Matalom, Southern Leyte, Philippines

No. of Technology sites analysed:

Geo-reference of selected sites

124.7965, 10.28741

Spread of the Technology: evenly spread over an area (approx. < 0.1 km2 (10 ha))

In a permanently protected area?:

Date of implementation: more than 50 years ago (traditional)

Type of introduction

- through land users' innovation
- as part of a traditional system (> 50 years)
 during experiments/ research
- through projects/ external interventions

sweet potato grown in between rows of corn (Engr. Jemar G. Raquid (Bureau of Soils and Water Management))

CLASSIFICATION OF THE TECHNOLOGY

Main purpose

- improve production
- reduce, prevent, restore land degradation
- conserve ecosystem
- protect a watershed/ downstream areas in combination with
- other Technologies
- preserve/ improve biodiversity
- reduce risk of disasters
- adapt to climate change/ extremes and its impacts
- mitigate climate change and its impacts
- create beneficial economic impact
- create beneficial social impact

Purpose related to land degradation

- prevent land degradation reduce land degradation
- restore/ rehabilitate severely degraded land adapt to land degradation not applicable

Land use

Cropland

 Annual cropping: cereals - maize, root/tuber crops - sweet potatoes, yams, taro/cocoyam, other, rice
 Number of growing seasons per year: 2

Water supply

- rainfed mixed rainfed-irrigated
- full irrigation

Degradation addressed

soil erosion by water - Wt: loss of topsoil/ surface erosion

physical soil deterioration - Pc: compaction

biological degradation - Bc: reduction of vegetation cover

agronomic measures - A1: Vegetation/ soil cover, A3: Soil

n.a.

SLM measures

surface treatment

Most important factors affecting the costs

water degradation - Ha: aridification

SLM group

- rotational systems (crop rotation, fallows, shifting cultivation)
- improved ground/ vegetation cover
- Intercropping

TECHNICAL DRAWING

Technical specifications

ESTABLISHMENT AND MAINTENANCE: ACTIVITIES, INPUTS AND COSTS

Calculation of inputs and costs

- Costs are calculated:
- Currency used for cost calculation: **n.a.**
- Exchange rate (to USD): 1 USD = 45.0
- Average wage cost of hired labour per day: n.a

Establishment activities

Sweet Potato Relay Cropping

n.a.

Establishment inputs and costs

Specify input	Unit	Quantity	Costs per Unit (n.a.)	Total costs per input (n.a.)	% of costs borne by land users
Plant material					
Corn seeds	kg	2.0	0.78	1.56	100.0
Rice seeds	kg	43.2	0.7777777	33.6	100.0
Sweet potato	cuttings	13000.0	0.00555555	72.22	100.0
Total costs for establishment of the Technology					
Total costs for establishment of the Technology in USD				2.39	

Maintenance activities

1. clearing (Timing/ frequency: March)

2. plowing (Timing/ frequency: 10 days after clearing)

3. harrowing (Timing/ frequency: after plowing)

4. furrowing (Timing/ frequency: after harrowing)

5. planting of rice (Timing/ frequency: April)

6. planting of corn (Timing/ frequency: 2 weeks after planting rice)

7. planting of sweet potato (Timing/ frequency: 2 months after planting corn)

8. weeding (Timing/ frequency: every month)

9. spraying (Timing/ frequency: three times before harversting)

10. harvesting of rice and corn (Timing/ frequency: None)

Maintenance inputs and costs

Specify input	Unit	Quantity	Costs per Unit (n.a.)	Total costs per input (n.a.)	% of costs borne by land users
Labour					
Labour	ha	1.0	391.5	391.5	100.0
Total costs for maintenance of the Technology					
Total costs for maintenance of the Technology in USD			8.7		

NATURAL ENVIRONMENT

Average annual rainfall < 250 mm 251-500 mm 501-750 mm 751-1,000 mm 1,001-1,500 mm 1,501-2,000 mm Z,001-3,000 mm 3,001-4,000 mm > 4,000 mm

Slope

1

flat (0-2%)

hilly (16-30%)

gentle (3-5%)

steep (31-60%)

semi-arid arid Landforms Altitude Technology is applied in plateau/plains 0-100 m a.s.l. convex situations 101-500 m a.s.l. ridges not relevant moderate (6-10%) mountain slopes 501-1,000 m a.s.l. 1 rolling (11-15%) hill slopes 1,001-1,500 m a.s.l. ✓ 1,501-2,000 m a.s.l. footslopes valley floors 2,001-2,500 m a.s.l. very steep (>60%) 2,501-3,000 m a.s.l. 3,001-4,000 m a.s.l. > 4,000 m a.s.l. Soil texture (> 20 cm below Soil texture (topsoil) very shallow (0-20 cm) coarse/ light (sandy) high (>3%) surface) shallow (21-50 cm) medium (loamy, silty) 1 coarse/ light (sandy) moderately deep (51-80 cm) fine/ heavy (clay) low (<1%) medium (loamy, silty) deep (81-120 cm) fine/ heavy (clay) very deep (> 120 cm)

Groundwater table

	on surface
	< 5 m
✓	5-50 m
	> 50 m

Soil depth

Availability of surface water excess good

Agro-climatic zone

sub-humid

humid

✓ medium

Water quality (untreated)

Specifications on climate

Thermal climate class: tropics

- 🔽 good drinking water poor drinking water (treatment required)
- for agricultural use only (irrigation)
- unusable

Water quality refers to:

concave situations

Topsoil organic matter content 🔽 medium (1-3%)

Is salinity a problem? Yes No

Occurrence of flooding Yes

No

Species diversity Habitat diversity high high medium medium ✓ low low CHARACTERISTICS OF LAND USERS APPLYING THE TECHNOLOGY Market orientation Off-farm income Relative level of wealth Level of mechanization less than 10% of all income manual work subsistence (self-supply) very poor animal traction mixed (subsistence/ 10-50% of all income poor commercial) > 50% of all income mechanized/ motorized 🗸 average commercial/ market rich very rich Sedentary or nomadic Individuals or groups Gender Age individual/ household 🗸 women children Sedentary 1 Semi-nomadic groups/ community 1 men youth Nomadic cooperative middle-aged employee (company, elderly government) Area used per household Scale Land ownership Land use rights ✓ small-scale < 0.5 ha open access (unorganized) state 🗸 0.5-1 ha medium-scale communal (organized) company 1-2 ha large-scale communal/ village ✓ leased 🗸 individual 2-5 ha group individual, not titled 5-15 ha Water use rights 15-50 ha individual, titled open access (unorganized) mixed land ownership 50-100 ha communal (organized) 100-500 ha leased 500-1,000 ha individual 1,000-10,000 ha > 10.000 ha Access to services and infrastructure health poor 🖌 🖌 good education poor 1 good technical assistance poor 1 good employment (e.g. off-farm) 🗸 📕 good poor markets poor ~ good energy ✓ poor good roads and transport 🖌 🔤 good poor drinking water and sanitation ✓ good poor financial services poor 🖌 🖌 good IMPACTS Socio-economic impacts farm income decreased / increased diversity of income sources decreased increased workload increased decreased less weeding needed since sweet potato served also as cover crop Socio-cultural impacts reduced improved food security/ self-sufficiency conflict mitigation worsened / improved Ecological impacts

Ecological impacts		
evaporation	increased	✓ decreased
soil moisture	decreased	✓ increased
soil cover	reduced	✓ improved
soil loss	increased	✓ decreased
soil organic matter/ below ground C	decreased	✓ increased
emission of carbon and greenhouse gases	increased	✓ decreased

Off-site impacts

COST-BENEFIT ANALYSIS Benefits compared with establishmet costs Short-term returns very negative very positive Long-term returns very negative very positive

Short-term returns	
Long-term returns	

Long-term returns very	negative	very positive			
CLIMATE CHANGE					
Gradual climate change annual temperature increase	not well at all	very well			
Climate-related extremes (disasters) drought	not well at all 📕 🖌 Very well				
ADOPTION AND ADAPTATION					
Percentage of land users in the area who Technology single cases/ experimental	have adopted the	Of all those who have adopted the Technology, how many have done so without receiving material incentives?			

mental			

	0-10%
	11-50%
	51-90%
✓	91-100%

Has the Technology been modified recently to adapt to changing conditions?

Yes

1-10% 11-50%

> 50%

No

To which changing conditions?

- climatic change/ extremes
- changing markets

labour availability (e.g. due to migration)

CONCLUSIONS AND LESSONS LEARNT

Strengths: land user's view

Strengths: compiler's or other key resource person's view

Simplicity of the farming practice with minimal external input requirement

How can they be sustained / enhanced? improvement in terms of planting distance or in the land preparation activity; look for other potential cover crop aside from sweet potato

Enhance Soil moisture conservation

How can they be sustained / enhanced? conduct research study to have a more scientific basis

Additional food source and farm income

How can they be sustained / enhanced? integration of other suitable crops for diversification; consider possible value-adding activity; help in the marketing of the product

Soil protection against erosion .

How can they be sustained / enhanced? Practice contouring and other soil conservation measures in the hilly land/sloping production areas to further minimize soil erosion

Weaknesses/ disadvantages/ risks: land user's viewhow to overcome

Weaknesses/ disadvantages/ risks: compiler's or other key resource person's viewhow to overcome

Low market price for sweet potato Value adding through postharvest processing of sweet potato;Livelihood development related to sweet potato post-harvest processing

Compiler Editors Reviewer Publippine Overview of Conservation Editors Salain Ottiger Approaches and Technologies Last update: June 13 Image: Salain Ottiger Date of documentation: March 26, 2016 Last update: June 13 Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Dinamling-SLM specialist Salain Ottiger Image: Salain Ottiger Spoly Ma Di	REFERENCES			
Resource persons Djolly Ma Dinamling - SLM specialist Jemar G. Raquid - SLM specialist Pastor Garcia - SLM specialist Full description in the WOCAT database https://qcat.wocat.net/en/wocat/technologies/view/technologies_1301/ Linked SLM data n.a. Documentation was faciliated by Institution • Bureau of Soils and Water Management (Bureau of Soils and Water Management) - Philippines • Visayas State University (VSU) - Philippines Project	Philippine Overview of Conservation	Editors		Fabian Ottiger
Djolly Ma Dinamling - SLM specialist Jemar G. Raquid - SLM specialist Pastor Garcia - SLM specialist Full description in the WOCAT database https://qcat.wocat.net/en/wocat/technologies/view/technologies_1301/ Linked SLM data n.a. Documentation was faciliated by Institution • Bureau of Soils and Water Management (Bureau of Soils and Water Management) - Philippines • Visayas State University (VSU) - Philippines Project	Date of documentation: March 26, 2016	Las	t update : June 13, 2	019
https://qcat.wocat.net/en/wocat/technologies/view/technologies_1301/ Linked SLM data n.a. Documentation was faciliated by Institution Bureau of Soils and Water Management (Bureau of Soils and Water Management) - Philippines Visayas State University (VSU) - Philippines Project	Djolly Ma Dinamling - SLM specialist Jemar G. Raquid - SLM specialist			
n.a. Documentation was faciliated by Institution • Bureau of Soils and Water Management (Bureau of Soils and Water Management) - Philippines • Visayas State University (VSU) - Philippines Project		view/technologies_1301/		
Institution • Bureau of Soils and Water Management (Bureau of Soils and Water Management) - Philippines • Visayas State University (VSU) - Philippines Project				
 Bureau of Soils and Water Management (Bureau of Soils and Water Management) - Philippines Visayas State University (VSU) - Philippines Project 	Documentation was faciliated by			
	 Bureau of Soils and Water Management (Bu Visayas State University (VSU) - Philippines Project 	reau of Soils and Water Manag	ement) - Philippines	;

This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0

International

© († §)