

white soil on red soil (Corinne Corradi)

## Adding Soil (Syrian Arab Republic)

Taghir al Turbe (arabic), akhelete (kurdish)

### DESCRIPTION

To add red (fertile, nutrient rich) valley soil to degraded white soil on slopes (in olive orchards)

Red soil is taken from valley fields, mines and construction work, transported to the slopes and added around the stem of each tree, ca. 2 m^3 per tree. Not done in the rainy season and only when there is soil available and spare time.

Purpose of the Technology: increase the soil depth and add nutrients in response to erosion and nutrient mining.

Establishment / maintenance activities and inputs: every five to ten years depending on rainfall and slope.

#### LOCATION



**Location:** Idleb, Affrin, Aleppo, Syrian Arab Republic

No. of Technology sites analysed:

Geo-reference of selected sites • 37.0, 35.0

Spread of the Technology:

In a permanently protected area?:

**Date of implementation:** less than 10 years ago (recently)

### Type of introduction

through land users' innovation
 as part of a traditional system (> 50 years)
 during experiments/ research
 through projects/ external interventions



200

red soil on white soil (Corinne Corradi)

#### Adding manure and fertilizer Rotational cropping Terraces

5 major soil and water conservation technologies (Corinne Corradi)

### CLASSIFICATION OF THE TECHNOLOGY

#### Main purpose

- improve production  $\checkmark$
- reduce, prevent, restore land degradation 1
  - conserve ecosystem protect a watershed/ downstream areas - in combination with
- other Technologies preserve/ improve biodiversity
- reduce risk of disasters
- adapt to climate change/ extremes and its impacts mitigate climate change and its impacts
- create beneficial economic impact 1
- create beneficial social impact

### Purpose related to land degradation

- prevent land degradation
- reduce land degradation 1
- restore/ rehabilitate severely degraded land 1 adapt to land degradation not applicable

## Land use



#### Cropland Annual cropping

- Tree and shrub cropping: olive
- Number of growing seasons per year: 1

### Water supply

- rainfed

### Degradation addressed



SLM measures

soil erosion by water - Wt: loss of topsoil/ surface erosion, Wg: gully erosion/ gullying, Wm: mass movements/ landslides

chemical soil deterioration - Cn: fertility decline and reduced organic matter content (not caused by erosion)

### SLM group

• integrated soil fertility management

### **TECHNICAL DRAWING**

### **Technical specifications**

### ESTABLISHMENT AND MAINTENANCE: ACTIVITIES, INPUTS AND COSTS

### Calculation of inputs and costs

- Costs are calculated:
- Currency used for cost calculation: syrian pounds
- Exchange rate (to USD): 1 USD = 50.0 syrian pounds
- Average wage cost of hired labour per day: 5.00

### Establishment activities

- 1. digging soil (Timing/ frequency: dry season)
- 2. transport soil (Timing/ frequency: dry season)
- 3. distributing soil (Timing/ frequency: None)

### Establishment inputs and costs

| Specify input | Unit | Quantity | Costs per Unit<br>(syrian<br>pounds) | Total costs<br>per input<br>(syrian<br>pounds) | % of costs<br>borne by land<br>users |
|---------------|------|----------|--------------------------------------|------------------------------------------------|--------------------------------------|
|---------------|------|----------|--------------------------------------|------------------------------------------------|--------------------------------------|

Most important factors affecting the costs labour, distance, transport, probably in the future also value of soil

mixed rainfed-irrigated full irrigation

| Labour                                                 |       |     |       |       |       |  |  |  |
|--------------------------------------------------------|-------|-----|-------|-------|-------|--|--|--|
| Labour                                                 | ha    | 1.0 | 50.0  | 50.0  | 100.0 |  |  |  |
| Equipment                                              |       |     |       |       |       |  |  |  |
| Machine use                                            | ha    | 1.0 | 50.0  | 50.0  | 100.0 |  |  |  |
| Construction material                                  |       |     |       |       |       |  |  |  |
| Earth                                                  | ha    | 1.0 | 100.0 | 100.0 | 100.0 |  |  |  |
| Other                                                  |       |     |       |       |       |  |  |  |
| Transport                                              | ha    | 1.0 | 100.0 | 100.0 |       |  |  |  |
| Total costs for establishment of the Technology        | 300.0 |     |       |       |       |  |  |  |
| Total costs for establishment of the Technology in USD |       |     |       |       |       |  |  |  |

Maintenance activities 1. digging soil (Timing/ frequency: dry season / once) 2. transport soil (Timing/ frequency: dry season / once) 3. distributing soil (Timing/ frequency: once)

### NATURAL ENVIRONMENT

| Average annual rainfall<br>< 250 mm<br>251-500 mm<br>501-750 mm<br>751-1,000 mm<br>1,001-1,500 mm<br>1,501-2,000 mm<br>2,001-3,000 mm<br>3,001-4,000 mm<br>> 4,000 mm | Agro-climatic zone<br>humid<br>sub-humid<br>✓ semi-arid<br>arid                                                         | Specifications on climate<br>n.a.                                                                                                                                                                                    |                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Slope<br>flat (0-2%)<br>gentle (3-5%)<br>moderate (6-10%)<br>rolling (11-15%)<br>hilly (16-30%)<br>steep (31-60%)<br>very steep (>60%)                                | Landforms<br>plateau/plains<br>ridges<br>mountain slopes<br>hill slopes<br>footslopes<br>valley floors                  | Altitude<br>0-100 m a.s.l.<br>✓ 101-500 m a.s.l.<br>✓ 501-1,000 m a.s.l.<br>1,001-1,500 m a.s.l.<br>1,501-2,000 m a.s.l.<br>2,001-2,500 m a.s.l.<br>2,501-3,000 m a.s.l.<br>3,001-4,000 m a.s.l.<br>> 4,000 m a.s.l. | Technology is applied in<br>convex situations<br>concave situations<br>not relevant                                                         |
| Soil depth<br>✓ very shallow (0-20 cm)<br>✓ shallow (21-50 cm)<br>moderately deep (51-80 cm)<br>deep (81-120 cm)<br>very deep (> 120 cm)                              | Soil texture (topsoil)<br>coarse/ light (sandy)<br>medium (loamy, silty)<br>fine/ heavy (clay)                          | Soil texture (> 20 cm below<br>surface)<br>coarse/ light (sandy)<br>medium (loamy, silty)<br>fine/ heavy (clay)                                                                                                      | Topsoil organic matter content<br>high (>3%)<br>medium (1-3%)<br>✓ Iow (<1%)                                                                |
| Groundwater table<br>on surface<br>< 5 m<br>5-50 m<br>> 50 m                                                                                                          | Availability of surface water<br>excess<br>good<br>medium<br>poor/ none                                                 | Water quality (untreated)<br>good drinking water<br>poor drinking water<br>(treatment required)<br>for agricultural use only<br>(irrigation)<br>unusable                                                             | Is salinity a problem?<br>Yes<br>No<br>Occurrence of flooding<br>Yes<br>No                                                                  |
| Species diversity<br>high<br>medium<br>low                                                                                                                            | Habitat diversity<br>high<br>medium<br>low                                                                              |                                                                                                                                                                                                                      |                                                                                                                                             |
| CHARACTERISTICS OF L                                                                                                                                                  | AND USERS APPLYING THE                                                                                                  | TECHNOLOGY                                                                                                                                                                                                           |                                                                                                                                             |
| Market orientation<br>subsistence (self-supply)<br>mixed (subsistence/<br>commercial)<br>commercial/ market                                                           | Off-farm income<br>less than 10% of all income<br>✓ 10-50% of all income<br>> 50% of all income                         | Relative level of wealth<br>very poor<br>poor<br>average<br>rich<br>very rich                                                                                                                                        | <ul> <li>Level of mechanization</li> <li>manual work         <ul> <li>animal traction</li> <li>mechanized/ motorized</li> </ul> </li> </ul> |
| Sedentary or nomadic<br>Sedentary<br>Semi-nomadic<br>Nomadic                                                                                                          | Individuals or groups<br>individual/ household<br>groups/ community<br>cooperative<br>employee (company,<br>government) | Gender<br>women<br>men                                                                                                                                                                                               | Age<br>children<br>youth<br>middle-aged<br>elderly                                                                                          |

| Area used per household<br>< 0.5 ha<br>0.5-1 ha<br>1-2 ha<br>2-5 ha<br>5-15 ha<br>15-50 ha<br>50-100 ha<br>100-500 ha<br>500-1,000 ha<br>1,000-10,000 ha<br>> 10,000 ha | Scale<br>small-scale<br>medium-scale<br>large-scale | Land ov<br>stat<br>com<br>grou<br>indiv  | wnership<br>e<br>pany<br>munal/ village<br>ip<br>vidual, not titled<br>vidual, titled | Land use rights<br>open access (unorganized)<br>communal (organized)<br>leased<br>individual<br>Water use rights<br>open access (unorganized)<br>communal (organized)<br>leased<br>individual |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Access to services and infrastruct                                                                                                                                      | ture                                                |                                          |                                                                                       |                                                                                                                                                                                               |
| IMPACTS                                                                                                                                                                 |                                                     |                                          |                                                                                       |                                                                                                                                                                                               |
| Socio-economic impacts<br>Crop production                                                                                                                               | decreased                                           | increased                                | 20-50% (red on whit                                                                   | e:63%, white on red: 38%)                                                                                                                                                                     |
| production area (new land under cultivation/ use)                                                                                                                       | decreased 🖌 🗸                                       | increased                                | In case soil is taken                                                                 | from good valley fields                                                                                                                                                                       |
| economic disparities                                                                                                                                                    | increased 🖌 🗸                                       | decreased                                |                                                                                       |                                                                                                                                                                                               |
| Socio-cultural impacts<br>community institutions<br>national institutions<br>SLM/ land degradation knowledge                                                            | weakened v<br>weakened v<br>reduced v               | strengthened<br>strengthened<br>improved |                                                                                       |                                                                                                                                                                                               |
| Ecological impacts<br>soil moisture                                                                                                                                     |                                                     |                                          |                                                                                       |                                                                                                                                                                                               |
|                                                                                                                                                                         | decreased 🗾 🖌                                       | increased                                | For white on red soi<br>better infiltration ar<br>moisture in subsoil i               | l, increased sand content may result in<br>nd reduces cracks of topsoil, increased<br>reported by farmers                                                                                     |
| nutrient cycling/ recharge                                                                                                                                              |                                                     |                                          |                                                                                       |                                                                                                                                                                                               |
|                                                                                                                                                                         | decreased 🖌 🗸                                       | increased                                | Adding white soil ad<br>decrease availabilty                                          | ds high active CaCO3, which might of cation nutrients                                                                                                                                         |
| pest/ disease control                                                                                                                                                   | decreased 🗾 🖌                                       | increased                                | Spreading of soil-bor<br>also Verticillium Dal                                        | rne diseases. Especially Vertcillium Wilt,<br>nliae                                                                                                                                           |
| Off-site impacts<br>reliable and stable stream flows in<br>dry season (incl. low flows)<br>downstream flooding (undesired)                                              | reduced 🗾 🖌 🖌                                       | increased<br>reduced                     |                                                                                       |                                                                                                                                                                                               |
| downstream siltation                                                                                                                                                    | increased 🖌 🗸                                       | decreased                                |                                                                                       |                                                                                                                                                                                               |
| groundwater/ river pollution wind transported sediments                                                                                                                 | increased 🖌 🗸                                       | reduced reduced                          | Downtields will bene                                                                  | TIT IT erosion is not stopped                                                                                                                                                                 |

### COST-BENEFIT ANALYSIS

| Benefits compared with establishment costs                                    |                                                         |  |  |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|--|
| Short-term returns                                                            | very negative                                           |  |  |  |  |  |
| Long-term returns                                                             | very negative                                           |  |  |  |  |  |
| Benefits compared with maintenance<br>Short-term returns<br>Long-term returns | very negative very positive very positive very positive |  |  |  |  |  |

### CLIMATE CHANGE

### ADOPTION AND ADAPTATION

Percentage of land users in the area who have adopted the Technology

## single cases/ experimental 11-50%

### Of all those who have adopted the Technology, how many have done so without receiving material incentives? 0-10%

| ~ |   |   | ~ |   |   |
|---|---|---|---|---|---|
| 1 | 1 | - | 5 | 0 | % |

| 1 | 1  | -5 | 0 | % |
|---|----|----|---|---|
| 5 | 51 | -9 | 0 | % |

# Has the Technology been modified recently to adapt to changing conditions?

#### Yes No

### To which changing conditions?

climatic change/ extremes changing markets labour availability (e.g. due to migration)

### CONCLUSIONS AND LESSONS LEARNT

#### Strengths: land user's view

- fast increase in yield
- reverse the effects of erosion
- Strengths: compiler's or other key resource person's view
- reverse the effects of erosion

How can they be sustained / enhanced? combine with other conservation technologies (stone bands etc.)

- soil that otherwise wouldn't be used can be used in this way
- How can they be sustained / enhanced? offer free transport of soil by government or other organisation
- don't have to apply to the entire field, possibility to keep investment down

Weaknesses/ disadvantages/ risks: land user's viewhow to overcome

expensive for the entire field not

## Weaknesses/ disadvantages/ risks: compiler's or other key resource person's viewhow to overcome

- it is not sustainable combine with conservation strategies like terraces, bands, less tillage
- soil born disease spreading soil analysis before adding and if positive either apply quarantine and solarization or leave it

### REFERENCES

**Compiler** Liesbeth Colen Editors

Date of documentation: March 10, 2011

### **Resource persons**

Liesbeth Colen - SLM specialist Sarah van Steenwinkel - SLM specialist

### Full description in the WOCAT database

https://qcat.wocat.net/en/wocat/technologies/view/technologies\_1004/

#### Linked SLM data

Approaches: Adding soil https://qcat.wocat.net/en/wocat/approaches/view/approaches\_2624/

#### Documentation was faciliated by

Institution

• n.a.

Project

• n.a.

### Key references

• Soil transfers in olive orchards of NS Syria, a bio-physical and socio-economic analysis of a local innovation. June 2007.: ICD Bern

This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0 International



**Reviewer** Fabian Ottiger Alexandra Gavilano

Last update: Aug. 2, 2019