

Meticulously built terrace risers reaching a height of 1.5 – 2 meters; frequent maintenance is needed to enhance risers and repair breaches (Hanspeter Liniger (Centre for Development and Environment, University of Bern))

Konso Bench Terrace (Ethiopia)

Kawata (Konso)

DESCRIPTION

It is a stone wall embankment along the contour with land leveling in between two terrace walls to control erosion.

The traditional Konso Bench Terraces are established by building up stone embarkments along the contour and gradually levelling the land in between risers. Levelling is done actively and by siltation processes. Stone walls have to be enhanced periodically. The appearance of the technology evolves over time from stone empankments to bench terraces. The stone walls are supported on the downslope side by trees and / or legumes including coffee, pigeon pea, etc.

Purpose of the Technology: The purpose of the structures is to break the slope length and reduce run-off concentration thereby controlling erosion, increasing water stored in soil and harvesting eroded sediments.

Establishment / maintenance activities and inputs: Terraces have a long tradition in the area, and farmers are specialists in construction of stone walls. The first step during terrace establishment is to dig foundation up to 30 cm. Then stone walls are gradually built up to an impressive height of 1.5-2m above ground. The technology is very labour intensive: establishment takes 5 years and bi-annual maintenance is required. However, it is worth the effort, since without terracing crop production would not be thinkable in a marginal area

effort, since without terracing crop production would not be thinkable in a marginal area characterised by shortage and high variability of rainfall, shallow, stony soils on steep slopes, high levels of soil erosion and (thus) frequent food shortages.

Natural / human environment: Social systems for labour-sharing and voluntary assistance have evolved to manage heavy labour inputs. Multiple cropping is practised for rist aversion. Growing leguminous crops helps to further improve soil fertility. Additional water harvesting measures are needed to further raise yields.

LOCATION

Location: SNNPR, Konso, Ethiopia

No. of Technology sites analysed:

Geo-reference of selected sites • 37.3539, 5.293

Spread of the Technology: evenly spread over an area (approx. 1,000-10,000 km2)

In a permanently protected area?:

Date of implementation: more than 50 years ago (traditional)

Type of introduction

- through land users' innovation
- as part of a traditional system (> 50 years) during experiments/ research
- through projects/ external interventions

Overview of a terraced hillside with annual crops and trees (Hanspeter Liniger (Centre for Development and Environment, University of Bern))

CLASSIFICATION OF THE TECHNOLOGY

Main purpose

improve production

- reduce, prevent, restore land degradation 1
- conserve ecosystem protect a watershed/ downstream areas - in combination with other Technologies
- preserve/ improve biodiversity
- reduce risk of disasters
- adapt to climate change/ extremes and its impacts
- mitigate climate change and its impacts

restore/ rehabilitate severely degraded land

create beneficial economic impact

Purpose related to land degradation

prevent land degradation

adapt to land degradation

not applicable

• cross-slope measure

SLM group

reduce land degradation

1

 \checkmark

create beneficial social impact

(Hanspeter Liniger (Centre for Development and Environment, University of Bern))

Land use

Cropland

- Annual cropping: oilseed crops sunflower, rapeseed, other, cereals - maize, cereals - sorghum, legumes and pulses - other, legumes and pulses - peas, pigeon pea • Tree and shrub cropping: coffee, open grown Number of growing seasons per year: 2
- Is crop rotation practiced? Yes

Water supply

rainfed mixed rainfed-irrigated full irrigation

Degradation addressed

soil erosion by water - Wt: loss of topsoil/ surface erosion

chemical soil deterioration - Cn: fertility decline and reduced organic matter content (not caused by erosion)

water degradation - Ha: aridification

SLM measures

agronomic measures - A1: Vegetation/ soil cover

vegetative measures - V1: Tree and shrub cover

structural measures - S1: Terraces

TECHNICAL DRAWING

Technical specifications

ESTABLISHMENT AND MAINTENANCE: ACTIVITIES, INPUTS AND COSTS

Calculation of inputs and costs

Most important factors affecting the costs

- Costs are calculated:
- Currency used for cost calculation: **Ethiopian Birr**
- Exchange rate (to USD): 1 USD = 8.5 Ethiopian Birr
- Average wage cost of hired labour per day: 0.60

Establishment activities

- 1. Survey (traditional) (Timing/ frequency: dry season)
- 2. Stone collection (Timing/ frequency: dry season)
- 3. Digging foundation (Timing/ frequency: dry season)
- 4. Soil sealing & land leveling (Timing/ frequency: dry season)
- 5. Constructions of stone wall (Timing/ frequency: dry season)

Establishment inputs and costs

Specify input	Unit	Quantity	Costs per Unit (Ethiopian Birr)	Total costs per input (Ethiopian Birr)	% of costs borne by land users	
Labour						
Labour	ha	1.0	1650.0	1650.0	100.0	
Equipment						
Machine use	ha	1.0	70.0	70.0	100.0	
Plant material						
Seeds	ha	1.0	40.0	40.0	100.0	
Construction material						
Stone	ha	1.0	300.0	300.0	100.0	
Total costs for establishment of the Technology						
Total costs for establishment of the Technology in USD						

Maintenance activities

1. Stabilizing by putting additional stones (Timing/ frequency: after rain/once a year)

2. The stone wallsupported by soil (Timing/ frequency: after rain/once a year)

3. Planting on the bench (Timing/ frequency: during the rain/once a year)

4. Land preparation (Timing/ frequency: dry season / 2-3 times per year)

5. Sawing/planting (Timing/ frequency: first rain / 1 per year)

6. Weeding/cultivation (Timing/ frequency: rainy season / 1-2 times per year)

Maintenance inputs and costs

Specify input	Unit	Quantity	Costs per Unit (Ethiopian Birr)	Total costs per input (Ethiopian Birr)	% of costs borne by land users	
Labour						
Labour	ha	1.0	500.0	500.0	100.0	
Plant material						
Seeds	ha	1.0	40.0	40.0	100.0	
Total costs for maintenance of the Technology						
Total costs for maintenance of the Technology in USD			63.53			

NATURAL ENVIRONMENT

Average annual rainfall

flat (0-2%)

gentle (3-5%)

moderate (6-10%)

hilly (16-30%)

rolling (11-15%)

steep (31-60%)

very steep (>60%)

very shallow (0-20 cm)

Slope

 \checkmark

Agro-climatic zone humid sub-humid

semi-arid

Specifications on climate Average annual rainfall in mm: 500.0 Thermal climate class: tropics

Landforms plateau/plains ridges mountain slopes ✓ hill slopes

footslopes

valley floors

Soil texture (topsoil)

coarse/ light (sandy)

Technology is applied in

- convex situationsconcave situations
- not relevant

Topsoil organic matter content high (>3%)

Soil depth

Soil texture (> 20 cm below surface)

Konso Bench Terrace

 shallow (21-50 cm) moderately deep (51-80 cm) deep (81-120 cm) very deep (> 120 cm) 	medium (loamy, silty) fine/ heavy (clay)	coarse/ light (sandy) medium (loamy, silty) fine/ heavy (clay)	 ✓ medium (1-3%) ✓ low (<1%)
Groundwater table on surface < 5 m 5-50 m > 50 m	Availability of surface water excess good medium poor/ none	Water quality (untreated) good drinking water poor drinking water (treatment required) for agricultural use only (irrigation) unusable	Is salinity a problem? Yes No Occurrence of flooding Yes No
Species diversity high medium Iow	Habitat diversity high medium Iow		
CHARACTERISTICS OF L	AND USERS APPLYING THE	TECHNOLOGY	
Market orientation subsistence (self-supply) mixed (subsistence/ commercial) commercial/ market	Off-farm income less than 10% of all income 10-50% of all income > 50% of all income	Relative level of wealth very poor ✓ poor ✓ average rich very rich	 Level of mechanization manual work animal traction mechanized/ motorized
Sedentary or nomadic Sedentary Semi-nomadic Nomadic	Individuals or groups individual/ household groups/ community cooperative employee (company, government)	Gender women men	Age children youth middle-aged elderly
Area used per household < 0.5 ha • 0.5-1 ha • 1-2 ha 2-5 ha 5-15 ha 15-50 ha 50-100 ha 100-500 ha 500-1,000 ha 1,000-10,000 ha > 10,000 ha	Scale small-scale medium-scale large-scale	 ∠ state company communal/ village group individual, not titled individual, titled 	Land use rights open access (unorganized) communal (organized) leased individual Water use rights open access (unorganized) communal (organized) leased individual

Access to services and infrastructure

IMPACTS			
Socio-economic impacts Crop production	decreased increased	Quantity before SLM: 0.4	
	inclused inclused	Sorghum yield raised by 50%	
farm income	decreased increased		
Socio-cultural impacts cultural opportunities (eg spiritual, aesthetic, others)	reduced / improved	Maintenance of cultural heritage	
	weakened strengthened	Mise en place d'une organisation des communautés et renforcement des groupes	
Ecological impacts			
surface runoff	increased decreased		
soli moisture	decreased	Due to increased infiltration	
soil loss	increased decreased		
soil organic matter/ below ground C	decreased increased	Sediment harvesting	

Long-term returns

increased			1		reduced
increased				1	decreased

very negative very positive

COST-BENEFIT ANAL	YSIS	
Benefits compared with est	ablishment costs	
Short-term returns	very negative	
Long-term returns	very negative	
Benefits compared with ma	aintenance costs	
Short-term returns	very negative	

La marge bénéficiaire est très faible, mais sans terrasses, pas de cultures possibles. Les exploitants continueront à investir dans des terrasses tant qu'ils pourront en tirer un moyen d'existence

CLIMATE CHANGE	
Gradual climate change annual temperature increase	not well at all 🗾 🖌 Very well
Climate-related extremes (disasters) local rainstorm local windstorm drought	not well at all very well not well at all very well not well at all very well
ADOPTION AND ADAPTATION	
Percentage of land users in the area who ha Technology	ve adopted the Of all those who have adopted the Technology, how many have done so without receiving material incentives?

single cases/ experimental
1-10%
11-50%
> 50%

0-10%

11-50%
51-90%
91-100%

Has the Technology been modified recently to adapt to changing

conditions?

Yes No

To which changing conditions?

- climatic change/ extremes
- changing markets
- labour availability (e.g. due to migration)

CONCLUSIONS AND LESSONS LEARNT

Strengths: land user's view

Strengths: compiler's or other key resource person's view

Weaknesses/ disadvantages/ risks: land user's viewhow to overcome

• Les terrasse nécessitent un entretien très fréquent, ce qui rend cette technologie très exigeante en main-d'œuvre utiliser de plus grosses pierres lors de la construction ; éviter le pâturage libre (les animaux endommagent les structures)

Weaknesses/ disadvantages/ risks: compiler's or other key resource person's viewhow to overcome

• The terraces require very frequent maintenance which makes the technology highly labour-demanding. Use bigger stones for construction; avoid free grazing (animals damage the structures).

REFERENCES				
Compiler Daniel Danano	Editors	Reviewer Alexandra Gavilano Fabian Ottiger		
Date of documentation: Oct. 19, 2010	Last update: Sept. 9, 20	019		
Resource persons Daniel Danano - SLM specialist				
Full description in the WOCAT database https://qcat.wocat.net/en/wocat/technologies/view/technologies_949/				
Linked SLM data Approaches: Labour exchange https://qcat.wocat.net/en/wocat/approaches/view/approaches_2674/ Approaches: Local Level Participatory Planning Approach (LLPPA) https://qcat.wocat.net/en/wocat/approaches/view/approaches_2389/				
Documentation was faciliated by				
 Institution Food and Agriculture Organization of the United Nations (FAO) - Italy Project Book project: SLM in Practice - Guidelines and Best Practices for Sub-Saharan Africa (SLM in Practice) 				
Key references Danano, D. 2008 (unpublished). Soil and Water Conservation Practices for Sustainable Land Management in Ethiopia. Ethiocat.: 				

This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0 International

