

Sorghum Terrace of Diredawa (STD) (Ethiopia)

Daga (Oromifa)

DESCRIPTION

It is a structural measure constructed across the slope to control erosion and increase soil moisture.

Sort motstere. Sorghum terrace of Diredawa locally called as Daga is constructed by placing stone walls across a slope following contour lines. The development of Sorghum terrace involves activities of creating an embankment at a given spacing, which depends on slope. Cultivation in the terrace is done by the use of Dengora (local name for spade like hand tool) if the land is sloping and by oxen if land slope is gentle (<8%). The purpose of developing Sorghum Terrace of Diredawa (STD) is to collect as much rainwater as possible for growing sorghum, which is planted by broad casting. Sorghum is the staple food in the area. Since rainfall is erratic, the STD allows more water to be stored in the soil. STD is maintained every year and also upgraded while performing different farm activities (Ploughing, Weeding, etc.,). Every time maintenance is made breaks in the terrace are repaired and additional height given to the terrace until it forms bench. STD is very suitable to areas with erratic rainfalls, sloping cultivated fields and land having abandant stones for construction. It is suitable to areas with semi-arid to arid climatic conditions and soils ranging from shallow depth to moderately deep.

LOCATION

Location: Dire Dawa, Dire Dawa, Ethiopia

No. of Technology sites analysed:

Geo-reference of selected sites • 41.85, 9.55

Spread of the Technology: evenly spread over an area (approx. 100-1,000 km2)

In a permanently protected area?:

Date of implementation: more than 50 years ago (traditional)

Type of introduction

- through land users' innovation
- as part of a traditional system (> 50 years) during experiments/ research
- through projects/ external interventions

CLASSIFICATION OF THE TECHNOLOGY

Main purpose

improve production

- reduce, prevent, restore land degradation
- conserve ecosystem
- protect a watershed/ downstream areas in combination with other Technologies
- preserve/ improve biodiversity
- reduce risk of disasters

adapt to climate change/ extremes and its impacts

Land use

Land use mixed within the same land unit: Yes - Agro-silvopastoralism

Cropland

- Annual cropping: cereals sorghum, legumes and pulses -
- beans, root/tuber crops potatoes, chat
 Tree and shrub cropping: mango, mangosteen
- Tree and shrub cropping: mango, mangosteen, guava, papaya

Number of growing seasons per year: 1 Is intercropping practiced? Yes

Grazing land

• Semi-nomadic pastoralism •

Cut-and-carry/ zero grazing Animal type: goats Species Count goats

Forest/ woodlands Products and services: Timber, Fuelwood, Grazing/ browsing, fodder

Water supply

 rainfed mixed rainfed-irrigated full irrigation

Degradation addressed

soil erosion by water - Wt: loss of topsoil/ surface erosion

SLM measures

agronomic measures - A2: Organic matter/ soil fertility, A3: Soil surface treatment

Purpose related to land degradation

- prevent land degradation
- reduce land degradation 1
- restore/ rehabilitate severely degraded land 1
- adapt to land degradation
- not applicable

SLM group

- improved ground/ vegetation cover
- cross-slope measure

TECHNICAL DRAWING

Technical specifications

Technical knowledge required for field staff / advisors: moderate

Technical knowledge required for land users: moderate

Main technical functions: reduction of slope angle, increase of infiltration, increase / maintain water stored in soil

Secondary technical functions: water harvesting / increase water supply, sediment retention / trapping, sediment harvesting

Early planting Material/ species: Sorghum + Chat Quantity/ density: 17500 +400

Mixed cropping / intercropping Material/ species: Sorghum + Potato

Contour planting / strip cropping Material/ species: Sorghum + Chat

Mulching Material/ species: Sorghu Stalk/residue

Green manure Material/ species: Sorghum/Chat-beans

Manure / compost / residues Material/ species: Sorghum/Chat

Contour tillage Remarks: Ploughing along the contour

Aligned: -contour Vegetative material: O : other Number of plants per (ha): 17500-2000 Spacing between rows / strips / blocks (m): 0.2 Vertical interval within rows / strips / blocks (m): 0.2-0.3

Perennial crops species: Chat

Slope (which determines the spacing indicated above): 10.00%

If the original slope has changed as a result of the Technology, the slope today is (see figure below): 3.00%

Gradient along the rows / strips: 0.00%

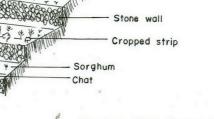
Terrace: backward sloping Vertical interval between structures (m): 1-2 Spacing between structures (m): 4-6 Height of bunds/banks/others (m): 1 Width of bunds/banks/others (m): 0.5-2 Length of bunds/banks/others (m): 50-300

Bund/ bank: level Vertical interval between structures (m): 1-2 Height of bunds/banks/others (m): 1 Width of bunds/banks/others (m): 0.3-0.5 Length of bunds/banks/others (m): 50-300

Construction material (earth): earth is placed upslope of the stone wall to provide reinforcement

Construction material (stone): stone is used for the embankment

Slope (which determines the spacing indicated above): 12%


If the original slope has changed as a result of the Technology, the slope today is: 4%

Lateral gradient along the structure: 0%

Vegetation is used for stabilisation of structures.

Sorghum Terrace of Diredawa (STD)

Sorghum, Chat Terrace is near to villages.

Sorghum alone is cropped far from villages.

Control / change of species composition: from mono-cropping to mixed cropping

ESTABLISHMENT AND MAINTENANCE: ACTIVITIES, INPUTS AND COSTS

Calculation of inputs and costs

- Costs are calculated:
- Currency used for cost calculation: Birr
- Exchange rate (to USD): 1 USD = 8.6 Birr
- Average wage cost of hired labour per day: 0.71

Establishment activities

- 1. Chat planting by cutting (Timing/ frequency: early rains)
- 2. Sorghum planting (Timing/ frequency: early rains)
- 3. Sowing (Timing/ frequency: with rains & withdrawal of rains)
- 4. Contour marking & layout (Timing/ frequency: dry period/after harvest)
- 5. Digging foundation (Timing/ frequency: after light rains/moist soil)
- 6. Stone collection (Timing/ frequency: dry season)
- 7. Stone wall placement (Timing/ frequency: after light rains/moist soil)
- 8. Earth support upslope (Timing/ frequency: after light rains/moist soil)
- 9. Clear vegetation (Timing/ frequency: dry period)
- 10. Construct Daga (Timing/ frequency: dry season)
- 11. Land preparation (Timing/ frequency: after the 1st rains)

Establishment inputs and costs

Specify input	Unit	Quantity	Costs per Unit (Birr)	Total costs per input (Birr)	% of costs borne by land users
Labour	-			• •	-
Labour	ha	1.0	272.0	272.0	50.0
Equipment					
Animal traction	ha	1.0	20.0	20.0	100.0
Tools	ha	1.0	4.0	4.0	100.0
Plant material			•		
Seeds	ha	1.0	5.0	5.0	100.0
Fertilizers and biocides					
Compost manure	ha	1.0			100.0
Total costs for establishment of the Technology			301.0		
Total costs for establishment of the Technology in USD			35.0		

Maintenance activities

- 1. Tillage (Timing/ frequency: dry season / 2-3)
- 2. Sowing (Timing/ frequency: dry season / each cropping season)
- 3. Cultivation (Timing/ frequency: early rains, after sawing, before flowering / each cropping season)
- 4. Weeding (Timing/ frequency: after flowrinf / each cropping season)
- 5. Harvest (Timing/ frequency: dry season, after crop matures / each cropping season)
- 6. Cultivation (Timing/ frequency: during rains /2)
- 7. Weeding (Timing/ frequency: withdrawal of rains /1)
- 8. Stone collection (Timing/ frequency: dry season/1)
- 9. Repairing breaks (Timing/ frequency: before planting/1)
- 10. Add stone wall height/upgrading (Timing/ frequency: before planting/1)
- 11. Plant stablizing/ trees/shrubs (Timing/ frequency: after rains/1)
- 12. Planting of useful trees & fruit trees (Timing/ frequency: after rains / annual)
- 13. Cultivation and weeding (Timing/ frequency: during rains / 2)

Maintenance inputs and costs

Specify input	Unit	Quantity	Costs per Unit (Birr)	Total costs per input (Birr)	% of costs borne by land users
Labour					
Labour	ha	1.0	40.7	40.7	100.0
Total costs for maintenance of the Technology			40.7		
Total costs for maintenance of the Technology in USD			4.73		

NATURAL ENVIRONMENT

Average annual rainfall

1,001-1,500 mm

< 250 mm
 251-500 mm
 501-750 mm
 751-1,000 mm

Agro-climatic zone humid sub-humid semi-arid arid

Most important factors affecting the costs

Slope:- As the slope increases cost of construction increases, Soil depth:- when the soil depth is shallow digging the foundation becomes more costly.

Average annual rainfall in mm: 600.0

Specifications on climate

Slope flat (0-2%) gentle (3-5%) moderate (6-10%) ✓ rolling (11-15%) hilly (16-30%) steep (31-60%) very steep (>60%)	Landforms plateau/plains ridges mountain slopes hill slopes footslopes valley floors	Altitude 0-100 m a.s.l. 101-500 m a.s.l. 501-1,000 m a.s.l. 1,501-2,000 m a.s.l. 2,001-2,500 m a.s.l. 2,501-3,000 m a.s.l. 3,001-4,000 m a.s.l. > 4,000 m a.s.l.	Technology is applied in convex situations concave situations not relevant
 Soil depth very shallow (0-20 cm) shallow (21-50 cm) moderately deep (51-80 cm) deep (81-120 cm) very deep (> 120 cm) 	Soil texture (topsoil) coarse/ light (sandy) medium (loamy, silty) fine/ heavy (clay) 	Soil texture (> 20 cm below surface) coarse/ light (sandy) medium (loamy, silty) fine/ heavy (clay)	Topsoil organic matter conten high (>3%) medium (1-3%) low (<1%)
Groundwater table on surface < 5 m 5-50 m > 50 m	Availability of surface water excess good medium poor/ none	Water quality (untreated) good drinking water poor drinking water (treatment required) for agricultural use only (irrigation) unusable	Is salinity a problem? Yes No Occurrence of flooding Yes No
Species diversity high medium low	Habitat diversity high medium low AND USERS APPLYING THE	TECHNOLOCY	
 CHARACTERISTICS OF L/ Market orientation subsistence (self-supply) mixed (subsistence/ commercial) commercial/ market 	 Off-farm income less than 10% of all income 10-50% of all income > 50% of all income 	Relative level of wealth very poor ✓ poor ✓ average rich very rich	 Level of mechanization manual work animal traction mechanized/ motorized
Sedentary or nomadic Sedentary Semi-nomadic Nomadic	Individuals or groups individual/ household groups/ community cooperative employee (company, government)	Gender women men	Age children youth middle-aged elderly
Area used per household < 0.5 ha 2 0.5-1 ha 2 1-2 ha 2-5 ha 5-15 ha 15-50 ha 50-100 ha 100-500 ha 500-1,000 ha 1,000-10,000 ha	Scale small-scale medium-scale large-scale	Land ownership state company communal/ village group individual, not titled individual, titled	Land use rights open access (unorganized) communal (organized) leased individual Water use rights open access (unorganized) communal (organized) leased individual

fodder quality

lodder quality	decreased increased	multipurpose tree species with good production potential are planted.
production area (new land under cultivation/ use)	decreased 🗾 🖌 🚺 increased	
land management	hindered 🖌 🖌 🚺 simplified	due to structures occupying land
farm income	decreased increased	due to structural obstraction
Socio-cultural impacts		
community institutions	weakened strengthen	
national institutions	weakened strengthen	ed
conflict mitigation	worsened improved	
Ecological impacts		
surface runoff	increased decreased	Quantity before SLM: 50
soil moisture	decreased 🖌 🗸 increased	Quantity after SLM: 0
soil loss	increased decreased	Quantity before SLM: 100 Quantity after SLM: 5
Soil fertility	decreased increased	
Off-site impacts		
downstream flooding (undesired)	increased reduced	
downstream siltation	increased decreased	
COST-BENEFIT ANALYSIS		
Benefits compared with establishm	ient costs	
Short-term returns	very negative	/e
Long-term returns	very negative	/e
Benefits compared with maintenan	nce costs	
Short-term returns	very negative	
Long-term returns	very negative 🖌 🖌 very positiv	/e
CLIMATE CHANGE		
-		

ADOPTION AND ADAPTATION

Technology	Percentage of land users in the area who have adopted the
	Technology

single cases/	experimental
1-10%	
11-50%	
> 50%	

Of all those who have adopted the Technology, how many have done so without receiving material incentives?

	0-10%
1	11-50%
	51-90%
	91-100%

Has the Technology been modified recently to adapt to changing conditions?

Yes

No

To which changing conditions?

- climatic change/ extremes
- changing markets
- labour availability (e.g. due to migration)

CONCLUSIONS AND LESSONS LEARNT

Strengths: land user's view

Production increased

How can they be sustained / enhanced? external support with incentives such as tools, material for constructing structures for flood and runoff diversion.

• more soil moisture

How can they be sustained / enhanced? integration of measures that reduces evapotranspiration

Weaknesses/ disadvantages/ risks: land user's viewhow to overcome

Weaknesses/ disadvantages/ risks: compiler's or other key resource person's viewhow to overcome

• hindering movement provide path way for humans and oxen during farm operation

• Soil erosion controlled

How can they be sustained / enhanced? exercise effective maintenance

Strengths: compiler's or other key resource person's view

have higher efficiency for retaining water in the soil

How can they be sustained / enhanced? Strengthening maintenance, avoid livestock, exercise stall feeding, enhancing runoff and flood farming

- mantenance is simple because material is available
- Forms bench terrace easily
- Soil loss is remarkably reduced
- Production doubled and even increased by 150-200%

REFERENCES

Compiler Daniel Danano Editors

Reviewer Fabian Ottiger Alexandra Gavilano

Date of documentation: May 30, 2011

Last update: Sept. 10, 2019

Resource persons Daniel Danano - SLM specialist Wondwosen Aberra - SLM specialist

Full description in the WOCAT database https://qcat.wocat.net/en/wocat/technologies/view/technologies_1067/

Linked SLM data n.a.

Documentation was faciliated by

Institution

- Food and Agriculture Organization of the United Nations (FAO) Italy
- Ministry of Agriculture and Rural Development of Ethiopia (Ministry of Agriculture and Rural Development) Ethiopia

Project

• n.a.

This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0 International

© († § ()