

Pigeon pea intercropped with maize (ProSOL Bénin)

Intercropping Pigeon Pea with Maize (Benin)

Otri

DESCRIPTION

Pigeon pea, a leguminous shrub, enhances the physical and chemical characteristics of the soil. Through symbiotic nitrogen fixation, it can fix approximately 70 kg of nitrogen per hectare per season. When intercropped with maize, pigeon pea has the potential to double both maize yields and pigeon pea grain production.

Pigeon pea, a leguminous shrub, is renowned for its capacity to enhance the physical and chemical characteristics of the soil. Through symbiotic nitrogen fixation, it can fix approximately 70 kg of nitrogen per hectare per season, extending until pod formation. When intercropped with maize, pigeon pea has the potential to double both maize yields and pigeon pea grain production, the latter being a valuable protein source. This technology boosts producers' income and contributes to food security. This combination utilized widely,

To implement this method, producers sow 20 kg/ha of maize seed and 20 kg/ha of pigeon pea, with 2 seeds per hole. Maize is sown using band sowing techniques, with a row spacing of 0.80 m and 1.60 m between plants at a depth of 3 to 5 cm. A row of maize is planted between two rows of pigeon peas, resulting in a density of 15,625 to 25,000 pigeon pea plants per bactare hectare

The combination of maize and pigeon pea is considered a climate change adaptation measure, as it allows for direct nitrogen input and helps improve soil productivity and fertility, thereby helping to guarantee food security and protect the soil in the long term. Implementation and maintenance involve a succession of operations: soil preparation, seed purchase, ploughing, sowing of maize 2 to 4 weeks before pigeon pea sowing, followed by weed management as needed. Harvesting begins with maize, which matures earlier than pigeon peas. Threshing operations are then carried out. After the harvest, pigeon pea plants are pruned, and firewalls are installed to support the growth of new flowering stems. Combining pigeon pea with maize also helps control maize pests, especially maize leaf pests. The foliage of pigeon pea provides ample biomass, which aids in soil fertilization, reduces soil evapotranspiration, and enhances microbial activity. For producers, this technology is simple and easy to implement, often regarded as a valuable "treasure." There is a noticeable contrast for producers between fields where maize is combined with pigeon pea and those without. Control plots without pigeon pea typically yield 0.5 to 1 ton/ha of maize, while plots with pigeon pea have shown yields of up to 3 tons/ha of maize. The combination of maize and pigeon pea is considered a climate change adaptation

maize.

Location: Banikoara, Alibori, Benin

No. of Technology sites analysed: 2-10 sites

Geo-reference of selected sites2.43227, 11.30681

Spread of the Technology: evenly spread over an area (1.0 km²)

In a permanently protected area?: No

Date of implementation: 2016

Type of introduction

- through land users' innovation
- as part of a traditional system (> 50 years) during experiments/ research
- through projects/ external interventions

Pigeon pea intercropped with maize (ProSOL Bénin)

CLASSIFICATION OF THE TECHNOLOGY

Main purpose

- improve production
- reduce, prevent, restore land degradation
- conserve ecosystem protect a watershed/ downstream areas – in combination with
 - other Technologies

preserve/ improve biodiversity reduce risk of disasters

- adapt to climate change/ extremes and its impacts mitigate climate change and its impacts create beneficial economic impact
- create beneficial social impact

Purpose related to land degradation

• improved ground/ vegetation cover

integrated soil fertility management

- prevent land degradation
- reduce land degradation
- restore/ rehabilitate severely degraded land adapt to land degradation
- not applicable

SLM group

Land use

10E

Land use mixed within the same land unit: No

Cropland

peas

- Annual cropping: cereals maize, legumes and pulses -
- .
 - Perennial (non-woody) cropping Number of growing seasons per year: 1
 - Is intercropping practiced? No Is crop rotation practiced? No

Water supply

rainfed
 mixed rainfed-irrigated
 full irrigation

Degradation addressed

chemical soil deterioration - Cn: fertility decline and reduced organic matter content (not caused by erosion)

biological degradation - Bh: loss of habitats, Bq: quantity/ biomass decline

SLM measures

agronomic measures - A1: Vegetation/ soil cover, A2: Organic matter/ soil fertility, A3: Soil surface treatment (A 3.1: No tillage), A6: Residue management (A 6.4: retained)

management measures - M6: Waste management (recycling, re-use or reduce)

TECHNICAL DRAWING

Technical specifications

Maize seeding:

Maize is sown with a spacing of 40 cm between plants within the rows and 80 cm between rows. The seeds are sown at a depth of 3 to 5 cm, with 2 maize seeds per plot. A quantity of 20 kg of high-quality seeds is recommended for one hectare.

Pigeon pea seeding: Pigeon pea (Cajanus cajan) is sown with 2 seeds per plot, commencing two weeks after the maize is sown. The sowing spacing is set at 80 cm between rows of maize and 160 cm between rows (consisting of 2 rows of pigeon pea separated by 1 row of maize), at a depth of 3 to 5 cm. For 1 hectare, it is advisable to use 20 kg of high-quality pigeon pea seeds.

Author: Marcellin Allagbe and Adolphe Adjanohoun

Most important factors affecting the costs

Labour scarcity

ESTABLISHMENT AND MAINTENANCE: ACTIVITIES, INPUTS AND COSTS

Calculation of inputs and costs

- Costs are calculated: per Technology area (size and area unit: **1ha**)
- Currency used for cost calculation: CFA F
- Exchange rate (to USD): 1 USD = 615.0 CFA F
- Average wage cost of hired labour per day: 2500

Establishment activities

- 1. Clearing (Timing/ frequency: March-April)
- 2. Plowing (Timing/ frequency: May to June)
- 3. Maize seeding (Timing/ frequency: June to July)
- 4. Pigeon pea seeding (Timing/ frequency: June to July)
- 5. Weeding (Timing/ frequency: June to July)
- 6. Maize harvesting (Timing/ frequency: December)
- 7. Pigeon pea harvesting (Timing/ frequency: January to February)

Establishment inputs and costs (per 1ha)

Specify input	Unit	Quantity	Costs per Unit (CFA F)	Total costs per input (CFA F)	% of costs borne by land users
Labour	-		-		
Clearing	ha	1.0	15000.0	15000.0	100.0
Ploughing	ha	1.0	30000.0	30000.0	100.0
Maize seeding	ha	1.0	10000.0	10000.0	100.0
Pigeon pea seeding	ha	1.0	10000.0	10000.0	100.0
Equipment					
Weeding	ha	1.0	12000.0	12000.0	100.0
Maize harvesting	ha	1.0	15000.0	15000.0	100.0
Pigeon pea harvesting	ha	1.0	10000.0	10000.0	100.0
Plant material					
Maize seeds	Kg	20.0	300.0	6000.0	100.0
Pigeon pea seeds	kg	20.0	500.0	10000.0	
Total costs for establishment of the Technology			118'000.0		
Total costs for establishment of the Technology in USD		191.87			

Maintenance activities

1. Coppicing (Timing/ frequency: January to February)

2. Firebreaking (Timing/ frequency: November to December)

Maintenance inputs and costs (per 1ha)

Specify input	Unit	Quantity	Costs per Unit (CFA F)	Total costs per input (CFA F)	% of costs borne by land users
Labour					
Coppicing	ha	1.0	10000.0	10000.0	100.0
Firebreaking	ha	1.0	5000.0	5000.0	100.0
Total costs for maintenance of the Technology			15'000.0		
Total costs for maintenance of the Technology in USD			24.39		

NATURAL ENVIRONMENT

Average annual rainfall < 250 mm 251-500 mm 501-750 mm 1,001-1,500 mm 1,501-2,000 mm 2,001-3,000 mm 3,001-4,000 mm > 4,000 mm	Agro-climatic zone humid sub-humid ✓ semi-arid arid	Specifications on climate Average annual rainfall in mm: 853.0		
<pre>Slope flat (0-2%) gentle (3-5%) moderate (6-10%) rolling (11-15%) hilly (16-30%) steep (31-60%) very steep (>60%)</pre>	Landforms plateau/plains ridges mountain slopes hill slopes footslopes valley floors	Altitude 0-100 m a.s.l. 2 101-500 m a.s.l. 501-1,000 m a.s.l. 1,001-1,500 m a.s.l. 1,501-2,000 m a.s.l. 2,001-2,500 m a.s.l. 2,501-3,000 m a.s.l. 3,001-4,000 m a.s.l. > 4,000 m a.s.l.	Technology is applied in convex situations concave situations rot relevant	
Soil depth ✓ very shallow (0-20 cm) ✓ shallow (21-50 cm) moderately deep (51-80 cm) deep (81-120 cm) very deep (> 120 cm)	Soil texture (topsoil) coarse/ light (sandy) ✓ medium (loamy, silty) ✓ fine/ heavy (clay)	Soil texture (> 20 cm below surface) coarse/ light (sandy) ✓ medium (loamy, silty) ✓ fine/ heavy (clay)	Topsoil organic matter content high (>3%) medium (1-3%) ✓ low (<1%)	
Groundwater table on surface < 5 m ✓ 5-50 m > 50 m	Availability of surface water excess good ✓ medium poor/ none	 Water quality (untreated) good drinking water poor drinking water (treatment required) for agricultural use only (irrigation) unusable Water quality refers to: ground water 	Is salinity a problem? Yes No Occurrence of flooding Yes No	
Species diversity high medium ✓ low	Habitat diversity high medium Z low			
CHARACTERISTICS OF L	AND USERS APPLYING THE	TECHNOLOGY		
Market orientation subsistence (self-supply) ✓ mixed (subsistence/ commercial) commercial/ market	Off-farm income ✓ less than 10% of all income 10-50% of all income > 50% of all income	Relative level of wealth very poor poor very average rich very rich	Level of mechanization manual work ✓ animal traction ✓ mechanized/ motorized	
Sedentary or nomadic ✓ Sedentary Semi-nomadic Nomadic	Individuals or groups individual/ household groups/ community cooperative employee (company, government)	Gender ✓ women ✓ men	Age children ✓ youth ✓ middle-aged elderly	
Area used per household < 0.5 ha 0.5-1 ha 1-2 ha 2 25 ha 2 5-15 ha 15-50 ha 50-100 ha 100-500 ha 500-1,000 ha 1,000-10,000 ha > 10,000 ha	Scale small-scale medium-scale large-scale	 Land ownership state company communal/village group individual, not titled individual, titled 	Land use rights open access (unorganized) communal (organized) leased individual Water use rights open access (unorganized) communal (organized) leased individual	

health education technical assistance employment (e.g. off-farm)

poor good poor good poor good

good good
good
good
good
good

IMPACTS		
Socio-economic impacts		
Crop production	decreased 🖌 🖌 increased	Quantity before SLM: 1.5 t per hectare Quantity after SLM: 2.5 t per hectare Combining corp with pireon pee doubles maize vields
crop quality		combining corn with pigeon pea doubles marze yields
	decreased increased	Once the crops have been combined over two seasons, chemical fertilizers are no longer required. The combination makes it easier to obtain organic products.
wood production		
product divorcity	increased	After coppicing, the stems are used as firewood by women.
product diversity	decreased e i i i i i i i i i i	Digoon poo soods are edible
land management expenses on agricultural inputs	hindered 🖌 🖌 simplified	
	increased decreased	Pigeon pea leaves yield sufficient biomass. This biomass facilitates soil fertilization.
farm income	decreased increased	Improved vields translate into higher agricultural incomes.
economic disparities	increased e e e e e e e e e e	
workload	increased 🖌 🖌 🖌 decreased	
Socio-cultural impacts food security/ self-sufficiency		
	reduced improved	Improving maize yields and sourcing pigeon pea seeds help improve food security for producers
recreational opportunities		
	reduced reduced improved	By improving their income, producers can afford to spend more time on leisure activities.
SLM/ land degradation knowledge	reduced improved	
Ecological impacts		
evaporation	increased decreased	
soil organic matter/ below ground C	decreased increased	
	worsened	
Off-site impacts buffering/ filtering capacity (by soil, vegetation, wetlands)	reduced reduced reduced	
COST-BENEFIT ANALYSIS		
Benefits compared with establishm	ent costs	
Short-term returns	very negative	
Long-term returns	very negative	
Benefits compared with maintenan	ce costs	
Short-term returns	very negative	
	very negative	
CLIMATE CHANGE		
Gradual climate change		
annual temperature increase	not well at all	
annual rainfall decrease	not well at all very well	Season: dry season
seasonal rainfall increase	not well at all 🗾 🖌 very well	Season: dry season
ADOPTION AND ADAPTATION	ON	
Percentage of land users in the area Technology	a who have adopted the Of all t done s	hose who have adopted the Technology, how many have without receiving material incentives?

Has the Technology been modified recently to adapt to changing conditions?

conditions?		
	Yes	
1	No	

To which changing conditions?

climatic change/ extremes changing markets labour availability (e.g. due to migration)

CONCLUSIONS AND LESSONS LEARNT

Strengths: land user's view

- Increased crop yields
- Regeneration of soil fertility
- Edibility of the seeds

Strengths: compiler's or other key resource person's view

- Enhanced soil fertility
- High nitrogen fixation capacityIncreased crop yields
- Weed control capability

• Maintenance difficulties, sudden bursting of pods Carry out

Weaknesses/ disadvantages/ risks: land user's viewhow to

maintenance when seedlings are not too developed; harvest as pods turn brown.

Weaknesses/ disadvantages/ risks: compiler's or other key resource person's viewhow to overcome

 The market for pigeon pea grain is virtually non-existent. Create warehouses for the sale of pigeon pea seeds; display pigeon pea seeds at agricultural fairs to promote their environmental, health and food safety benefits.

REFERENCES

Compiler Gatien AGBOKOUN CHRISTOPHE Editors Siagbé Golli Abdoul Karim MIEN DOSSOU-YOVO bernardin Tabitha Nekesa Ahmadou Gaye **Reviewer** Sally Bunning William Critchley

Last update: May 24, 2024

Date of documentation: Nov. 22, 2022

Resource persons

Roland DOSSOUMON - SLM specialist Moumouni ALIOU - SLM specialist

Full description in the WOCAT database

https://qcat.wocat.net/en/wocat/technologies/view/technologies_6518/

Linked SLM data

n.a.

Documentation was faciliated by

Institution

• Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)

Project

• Soil protection and rehabilitation for food security (ProSo(i)l)

Key references

- Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, 2018, Compendium de fiches techniques du formateur:
- INRAB, 2015, Fiche Technique pour l'association du maïs et du pois d'angole pour l'amélioration de la fertilité et de l'humidité du sol au Sud du Bénin: https://www.researchgate.net/publication/331862221_FICHE_TECHNIQUE_08
- AMADJI Firmin. 2004, Pour une amélioration durable de la fertilité du sol et des rendements au centre et au sud Bénin. Bulletin de la Recherche Agronomique du Bénin (BRAB), Annales des Sciences Agronomiques du Bénin. 2 (2): 123 -139:
- BADOU A., AKONDE P. T., ADJANOHOUN A., ADJE I. T., AÏHOU K.et IGUE A. M. 2013, Effets de différents modes de gestion des résidus de soja sur le rendement du maïs dans les conditions agroécologiques du CentreBénin. Bulletin de la Recherche agronomique du Bénin (BRAB), Numéro spécial Fertilité du maïs – Janvier : 34-38. BRAB: http://www.slire.net

This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0 International

