Earth checks for Gully reclamation [Ethiopia]

technologies_1069 - Ethiopia

Completeness: 65%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:
SLM specialist:

Estifanos Zena

Ministry of Agriculture and Rural Development


SLM specialist:

Desta Hiwot

Boditi, Department of Agriculture and Rural Development


Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
FAO (FAO) - Italy
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Ministry of Agriculture and Rural Development (Ministry of Agriculture and Rural Development) - Ethiopia

1.3 Conditions regarding the use of data documented through WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:


2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

Earh-checks are constructed of earth embankment put across in a deep gully in such a way to trap sediment and store water passing by it.

2.2 Detailed description of the Technology


Active deep gullies are plugged by digging earth from the bottom as well as gully sides and embanked forming a barrier to runoff passing through it. The embankment is reinforced by planting useful plants such as banana, sesbania, gravillea, gesho, etc., The purpose is to rehabilitate gullies having depth and expand along sides and towards the head. By constructing earth checks the water is stored in the checks. The water percolates down the ground enriching the ground water. The soil is trapped in the checks and later brings up the gully gradient higher. As a result, a cultivable/cropable strip is formed. Weeding and cultivation done to plants established.The gully fence and breaks are repaired. The technology is seen to be suitable to humid highlands where land loss by gully is a serious problem and land under cultivation and grazing is getting here and there. In brief it is suitable in areas where land degradation problem is increasing with currently cultivated and grazed lands are encroched by gully expansion.

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment



Region/ State/ Province:


Further specification of location:

SNNPR/Damot Galle/Bilate


Total area covered by the SLM Technology is 51.2 km2.

2.6 Date of implementation

If precise year is not known, indicate approximate date:
  • less than 10 years ago (recently)

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • through projects/ external interventions
Comments (type of project, etc.):

The technology is introduced but highly modified by adjesting design, layout and by increasing use of locally available materials for construction.

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • reduce, prevent, restore land degradation

3.2 Current land use type(s) where the Technology is applied

Land use mixed within the same land unit:


Specify mixed land use (crops/ grazing/ trees):
  • Agro-silvopastoralism



  • Annual cropping
  • Perennial (non-woody) cropping
  • Tree and shrub cropping
Annual cropping - Specify crops:
  • cereals - maize
  • cereals - sorghum
  • root/tuber crops - sweet potatoes, yams, taro/cocoyam, other
  • root/tuber crops - cassava
  • root/tuber crops - potatoes
Tree and shrub cropping - Specify crops:
  • avocado
  • fruits, other
  • mango, mangosteen, guava
  • papaya
  • enset, taro, sugar cane, Leucaena, Sesbania, Grevillea
Number of growing seasons per year:
  • 2

Longest growing period in days: 210 Longest growing period from month to month: Apr - Oct Second longest growing period in days: 180 Second longest growing period from month to month: Aug - Jun

Is intercropping practiced?


If yes, specify which crops are intercropped:

maize-sweet potato/haricot bean

Is crop rotation practiced?


If yes, specify:


Grazing land

Grazing land

Animal type:
  • cattle - dairy
  • horses
  • donkeys, oxen
Forest/ woodlands

Forest/ woodlands

Products and services:
  • Timber
  • Fuelwood
  • Grazing/ browsing

Major land use problems (compiler’s opinion): Monocropping, soil erosion, fertility mining, overgrazing, improper runoff management.

Grazingland comments: Livestock such as cows, oxen, donkeys and horse are thethered at a very small piece of land left infront of houses usually meant for social purposes. Some farmers thether their animals in a piece of land left uncropped in the field. The most part of livestock feed comes from crop residue which is collected from crop fields. Maize stalk, teff straw and enset leaves are fed stall.

Forest products and services: timber, fuelwood, grazing / browsing

Type of cropping system and major crops comments: Maize-sweet potato-Teff-potato-sorghum

3.4 Water supply

Water supply for the land on which the Technology is applied:
  • rainfed

3.5 SLM group to which the Technology belongs

  • cross-slope measure
  • water harvesting

3.6 SLM measures comprising the Technology

3.7 Main types of land degradation addressed by the Technology

soil erosion by water

soil erosion by water

  • Wt: loss of topsoil/ surface erosion
  • Wg: gully erosion/ gullying
chemical soil deterioration

chemical soil deterioration

  • Cn: fertility decline and reduced organic matter content (not caused by erosion)

Main type of degradation addressed: Wt: loss of topsoil / surface erosion, Wg: gully erosion / gullying

Secondary types of degradation addressed: Cn: fertility decline and reduced organic matter content

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • prevent land degradation
  • reduce land degradation

Main goals: Also rehabilitation / reclamation of denuded land

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

Technical specifications (related to technical drawing):


Technical knowledge required for field staff / advisors: high

Technical knowledge required for land users: moderate

Main technical functions: water harvesting / increase water supply, sediment retention / trapping, sediment harvesting

Secondary technical functions: control of concentrated runoff: retain / trap, reduction of slope angle, reduction of slope length

Early planting
Material/ species: maize
Quantity/ density: 85000/ha
Remarks: sawn in lines

Mixed cropping / intercropping
Material/ species: maize-sweet potato/haricot bean
Remarks: inter cropped & strip cropped

Contour planting / strip cropping
Material/ species: maize-taro-enset

Material/ species: enset

Manure / compost / residues
Material/ species: maize, potato, sweet potato, traro

Mineral (inorganic) fertilizers
Material/ species: Teff, maize, sorghum

Rotations / fallows
Material/ species: maize-tarro-sorghum
Remarks: only rotations

Breaking compacted topsoil
Remarks: primary and secondary oxen tillage

Contour tillage
Remarks: tillage done following contour

Agronomic measure: harrowing

Aligned: -contour
Vegetative material: O : other
Vertical interval between rows / strips / blocks (m): 0.2-0.5
Spacing between rows / strips / blocks (m): 2-4
Vertical interval within rows / strips / blocks (m): 0.5-2
Width within rows / strips / blocks (m): 0.5-1

Scattered / dispersed
Vegetative material: T : trees / shrubs
Number of plants per (ha): 4000
Vertical interval between rows / strips / blocks (m): 0.2
Spacing between rows / strips / blocks (m): 1.5x1.5
Vertical interval within rows / strips / blocks (m): 1.5
Width within rows / strips / blocks (m): 1.5

In blocks
Vegetative material: T : trees / shrubs
Number of plants per (ha): 2500
Vertical interval between rows / strips / blocks (m): 0.5
Spacing between rows / strips / blocks (m): 2x2
Vertical interval within rows / strips / blocks (m): 2
Width within rows / strips / blocks (m): 2

Trees/ shrubs species: Leucaena, Sesbania, Grevillea

Fruit trees / shrubs species: Mango, papaya, Avocado

Perennial crops species: Casava

Slope (which determines the spacing indicated above): 10.00%

If the original slope has changed as a result of the Technology, the slope today is (see figure below): 8.00%

Gradient along the rows / strips: 0.00%

Diversion ditch/ drainage
Depth of ditches/pits/dams (m): 0.5
Width of ditches/pits/dams (m): 0.5
Length of ditches/pits/dams (m): 100
Height of bunds/banks/others (m): 0.6
Width of bunds/banks/others (m): 0.5
Length of bunds/banks/others (m): 100

Retention/infiltration ditch/pit, sediment/sand trap
Vertical interval between structures (m): 0.5
Depth of ditches/pits/dams (m): 0.6
Width of ditches/pits/dams (m): 0.7
Length of ditches/pits/dams (m): 4
Height of bunds/banks/others (m): 0.75
Width of bunds/banks/others (m): 0.6

Terrace: backward sloping
Vertical interval between structures (m): 1.5
Spacing between structures (m): 12
Depth of ditches/pits/dams (m): 0.9
Width of ditches/pits/dams (m): 0.5
Length of ditches/pits/dams (m): 50-75

Bund/ bank: level
Vertical interval between structures (m): 1.2
Spacing between structures (m): 10
Depth of ditches/pits/dams (m): 0.6
Width of ditches/pits/dams (m): 0.7
Length of ditches/pits/dams (m): 50-80
Height of bunds/banks/others (m): 0.75

Construction material (earth): Most of the structural measures are made by earth involving excavation and embankment.

Construction material (stone): Stone is mainly used for demonstration.

Slope (which determines the spacing indicated above): 10%

If the original slope has changed as a result of the Technology, the slope today is: 8%

Lateral gradient along the structure: 0%

Vegetation is used for stabilisation of structures.

Change of land use type: The land after treatment is closed

Control / change of species composition: Grazing land changed to plantation and cropping

Other type of management: change of management / intensity level - Grazing land changed to plantation and cropping

4.2 General information regarding the calculation of inputs and costs

other/ national currency (specify):


If relevant, indicate exchange rate from USD to local currency (e.g. 1 USD = 79.9 Brazilian Real): 1 USD =:


Indicate average wage cost of hired labour per day:


4.3 Establishment activities

Activity Timing (season)
1. Land preparation September, october
2. Sugar cane planting November
3. Sugar cane cultivation January/August
4. Casava planting April
5. Casava cultivation June
6. Maize planting January-1st plough, April 2nd plough
7. Maize cultivation June
8. Sweet potato planting September
9. Sweet potato cultivation October
10. Fruite trees June
11. Digging foundation November-February
12. Forming embankment November-February
13. Side wall shaping November-February
14. Planting trees and shrubs March-1st planting & June 2nd planting
15. Excluding animals by fencing and guarding all year
16. Construct cutoff drain dry season
17. Establish buffer zone between Area enclosure and crop land by strip of plantation June/July
18. Construct earth checks and trenches in the gully dry season

4.4 Costs and inputs needed for establishment

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour Labour ha 1.0 282.3 282.3 100.0
Equipment Tools ha 1.0 270.6 270.6 100.0
Plant material Seedlings ha 1.0 117.6 117.6 100.0
Total costs for establishment of the Technology 670.5
Total costs for establishment of the Technology in USD 78.88

Duration of establishment phase: 24 month(s)

4.5 Maintenance/ recurrent activities

Activity Timing/ frequency
1. Land preparation september, october / 2 times
2. Sweet potato planting September / each cropping season
3. Sweet potato cultivation October / each cropping season
4. Maize planting January/April / each cropping season
5. Maize cultivation June / each cropping season
6. Teff sawing
7. Teff weeding
8. Prunning october /once
9. Mulching october /once
10. Thining october /once
11. Fencing any time /once
12. Weeding June/each cropping season
13. Cultivation March/each cropping season
14. Replanting June/each cropping season
15. Repair in breaks November-February/each cropping season
16. Fence each cropping season
17. Repair breaks on cutoff drain and earth checks dry season / 2 years
18. Prunning, weeding and cultivation end of rains / each cropping season

4.6 Costs and inputs needed for maintenance/ recurrent activities (per year)


Machinery/ tools: spade, hoe

Length and width of structure

4.7 Most important factors affecting the costs

Describe the most determinate factors affecting the costs:

Factors affecting costs in this technology are the depth and width of gully, steepness of slope, planting and replanting of vegetative materials.

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Agro-climatic zone
  • sub-humid

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
Comments and further specifications on topography:

Slopes on average: Moderate (ranked 1, about 70%), gentle and rolling (both ranked 2) and flat (ranked 3)

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • medium (loamy, silty)
Topsoil organic matter:
  • medium (1-3%)
If available, attach full soil description or specify the available information, e.g. soil type, soil PH/ acidity, Cation Exchange Capacity, nitrogen, salinity etc.

Soil depth on average: Deep (Soils are very deep (75%))
Soil texture: Medium (fertile loam soils)
Soil fertility is medium (ranked 1) and high (ranked 2)
Topsoil organic matter: Medium (ranked 1, in the crop lands), low (ranked 2, degraded areas) and high (ranked 3, around the homestead)
Soil water storage capacity: Medium (ranked 1, on crop land) and high (ranked 2, on flat plateau land)

5.6 Characteristics of land users applying the Technology

Market orientation of production system:
  • subsistence (self-supply)
  • mixed (subsistence/ commercial)
Off-farm income:
  • 10-50% of all income
Relative level of wealth:
  • average
Level of mechanization:
  • manual work
  • animal traction
Indicate other relevant characteristics of the land users:

Population density: > 500 persons/km2
Annual population growth: 2% - 3%
5% of the land users are rich.
10% of the land users are average wealthy.
45% of the land users are poor.
40% of the land users are poor.
Off-farm income specification: Farmers who have SWC measures on their land produce more and hence have better financial income, which could allow them get involved in petty trade and other activities.
Level of mechanization: Animal traction (ranked 1, crop lands) and manual work ( ranked 2, homstead and gully lands)
Market orientation of cropland production system: subsistence (self-supply, maize) and mixed (subsistence/ commercial, sweet potato, teff, coffee)

5.7 Average area of land used by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha

Cropland: 0.5-1 ha (more than 80% of farmers) and 1-2 ha
grazing land: 0.5-1 ha (communal grazing lands are severly degraded)

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts


crop production


fodder production


fodder quality


production area

Comments/ specify:

Shortage of grazing land: Animals are thethered in a small plots

Income and costs

farm income


Socio-cultural impacts

community institutions

Comments/ specify:

teams are formed

national institutions


SLM/ land degradation knowledge


conflict mitigation

Comments/ specify:

many wants to be beneficiaries but only the poor given the opportunities

Ecological impacts


soil moisture


soil cover


soil loss

Other ecological impacts

Biodiversity enhancement


6.2 Off-site impacts the Technology has shown

downstream flooding

Comments/ specify:

all runoff retained

downstream siltation

Comments/ specify:

all soil trapped

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

slightly positive

Long-term returns:


How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:


Long-term returns:


6.5 Adoption of the Technology


50 land user families have adopted the Technology with external material support

7. References and links

7.1 Methods/ sources of information

Links and modules

Expand all Collapse all