Esta es una versión des actualizada, inactiva de este caso. Ir a la versión actual.
Tecnologías
Inactivo

The “Green Liver System”: eco-friendly water purification [Brasil]

Fitorremediação (Portuguese)

technologies_1710 - Brasil

Visualizar secciones

Expandir todo Colapsar todos
Completado: 80%

1. Información general

1.2 Detalles de contacto de las personas de referencia e instituciones involucradas en la evaluación y la documentación de la Tecnología

Persona(s) de referencia clave

Especialista MST:
Especialista MST:
Especialista MST:
Nombre del proyecto que financió la documentación/ evaluación de la Tecnología (si fuera relevante)
Book project: Making sense of research for sustainable land management (GLUES)
Nombre de la(s) institución(es) que facilitaron la documentación/ evaluación de la Tecnología (si fuera relevante)
Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB) - Alemania
Nombre de la(s) institución(es) que facilitaron la documentación/ evaluación de la Tecnología (si fuera relevante)
Potsdam-Institut für Klimaforschung (PIK) - Alemania
Nombre de la(s) institución(es) que facilitaron la documentación/ evaluación de la Tecnología (si fuera relevante)
Universität Hohenheim - Alemania
Nombre de la(s) institución(es) que facilitaron la documentación/ evaluación de la Tecnología (si fuera relevante)
Technische Universität Berlin (Technische Universität Berlin) - Alemania
Nombre de la(s) institución(es) que facilitaron la documentación/ evaluación de la Tecnología (si fuera relevante)
Hochschule für Technik und Wirtschaft Dresden (HTW Dresden) - Alemania

1.3 Condiciones referidas al uso de datos documentados mediante WOCAT

El compilador y la/s persona(s) de referencia claves aceptan las condiciones acerca del uso de los datos documentados mediante WOCAT:

2. Descripción de la Tecnología MST

2.1 Breve descripción de la Tecnología

Definición de la Tecnología:

Water purification using macrophytes to treat effluent from fish farming.

2.2 Descripción detallada de la Tecnología

Descripción:

The “Green Liver System” uses aquatic plants, established in artificial wetlands, to remove, transfer, stabilize or eliminate pollutants in wastewater from fish farms. The use of large quantities of feed in aquaculture, along with the application of antibiotics, hormones and probiotics, has negative impacts on aquatic ecosystems due to the introduction of nitrogen, phosphorous and drug residues into the system. The Green Liver System is a form of phytoremediation (phyto = plant and remediate = correct) that uses a range of plants to decompose, extract, or hold contaminants present in soils and waters. This technology has been considered as an innovative alternative and a low cost option compared to others used in contaminated sites - like membrane bioreactors, upflow anaerobic sludge blanket (UASB), and others.

The plants selected for use in Green Liver System artificial wetlands depend on the pollutant to be removed. Research shows physiological differences between species, which need to be taken into account when planning wastewater treatments. Ideal plants for phytoremediation need: a) a fast growth rate; b) high biomass production; c) long rooting systems; d) easy maintenance/pruning; e) to be able to persists, and f) to have the ability to store trace metals within specific parts which can be later removed.

The Green Liver System uses aquatic macrophytes, which extract contaminants from the water, store them, or even metabolize them - transforming them into less toxic or harmless products. In the case of Eichhornia crassipes, most of the solids in suspension are removed by sedimentation or by adsorption in the root system. The dense coverage of these plants reduces the mixing effect of the wind, as well as minimizing thermal mixture. Shading by the plants restricts algal growth and the root system prevents horizontal movement of particulate material. In this way, particles are removed from the wastewater and microorganisms associated with the plants’ rhizosphere slowly decompose. Many organisms can be used in biodegradation: these include bacteria and fungi as well as plants, and the efficiency of one or the other depend, in many cases, on the molecule structure and of the presence of enzymes that are effective in degrading the pollutant.

The fish farm used as an example here is located on the margins of the Itaparica reservoir in Brazil. There are dozens of excavated tanks used to produce tilapia (Oreochromis niloticus) and “tambaqui” (Colossoma macropomum) fingerlings and juvenile fish. As well as these tanks, there are many net enclosures installed in the reservoir where the fishes are reared to maturity. Part of the wastewater from the excavated tanks is released into a stabilization lagoon, and the remainder goes to the Green Liver System. The effluent is enriched with spare feed, and excreta from the fish, which includes drug residues. If not treated, this may cause eutrophication because of its mineral richness. The Green Liver System consists of an excavated tank of 100m x 20m x 2m in size. The tank is subdivided into six parts: two planted to Eichhornia crassipes and four to Egeria densa. A mesh barrier stops fish from being flushed into the tank. Regular monitoring of the physical, chemical and biological parameters is required to control environmental fluctuations.

2.3 Fotografías de la Tecnología

2.5 País/ región/ lugares donde la Tecnología fue aplicada y que se hallan comprendidos por esta evaluación

País:

Brasil

Región/ Estado/ Provincia:

Pernambuco

Especifique más el lugar :

Vila do Coité, Itacuruba

2.6 Fecha de la implementación

Si no se conoce el año preciso, indique la fecha aproximada:
  • hace menos de 10 años (recientemente)

2.7 Introducción de la Tecnología

Especifique cómo se introdujo la Tecnología:
  • durante experimentos/ investigación
Comentarios (tipo de proyecto, etc.):

Construction took place in 2013, building on earlier experiences of the principal scientist, for instance in South Korea.

3. Clasificación de la Tecnología MST

3.1 Propósito(s) principal(es) de la Tecnología MST

  • conservar el ecosistema

3.2 Tipo(s) actuales de uso de la tierra donde se aplica la Tecnología

Tierra de pastoreo

Tierra de pastoreo

vías fluviales, masas de agua, humedales

vías fluviales, masas de agua, humedales

  • Estanques, diques
Comentarios:

Major land use problems (compiler’s opinion): The Itaparica reservoir was completed in 1988 to generate hydropower. About 40,000 people were compulsorily relocated. The construction of the reservoir had interrupted fish movement, leading to a shortage of fish, making aquaculture a viable and profitable alternative, and current law allows this. However excess feed and excreta of fish, partly containing drug residues, add nutrients and pollute water. ECONOMIC ASPECTS: The agricultural economy of this semi-arid region is characterized by pastoral activities, as well as the cultivation of crop species resistant to drought, such as cotton, corn (maize), beans, and cassava in humid areas. Irrigation from the reservoir was potentially possible but investments in aquaculture proved more profitable. In general, the commercial companies involved do not treat effluent, leading to pollution. Even though monitoring is mandatory, almost nobody does it, nor do they make substantial efforts to purify the effluent.

Major land use problems (land users’ perception): There are several conflicts over water and related land use in the region. Some people say the water quality in the reservoir is good (and use it directly for drinking), others report ill-health especially during times of low water levels. Commercial aquaculture primarily produces tilapia. Invariably, some tilapia escape from their net cages and take over from other local species. The hydroelectric company manages the reservoir according to national needs in electricity – thus sudden water level fluctuations are frequent. Commercial aquaculture and associated land use dominate the shoreline, preventing access for artisanal fishermen to their traditional fishing grounds.

Future (final) land use (after implementation of SLM Technology): Other: Ow: Waterways, drainage lines, ponds, dams
Constraints of transition land, fallow or sporadicall used by roaming livestock (mainly goats) (area in between the land-based aquaculture and the lake)

3.3 Información adicional sobre el uso de tierras

Provisión de agua para la tierra donde se aplica la Tecnología:
  • mixta de secano – irrigada
Número de temporadas de cultivo por año:
  • 1
Especifique:

Longest growing period from month to month: all year due to tropical climate

3.4 Grupo MST al que pertenece la Tecnología

  • manejo de agua superficial (manantial, río, lagos, mar):
  • protección/manejo de humedales
  • Water purification

3.5 Difusión de la Tecnología

Comentarios:

Total area covered by the SLM Technology is 2 m2.
The reservoir is 100m long and 20 m wide, with a depth of 1.7 m, but the area may be larger depending on the volume of effluent to be treated. The whole area comprises the fish ponds.

3.6 Medidas MST que componen la Tecnología

medidas vegetativas

medidas vegetativas

  • V5: Otros
medidas estructurales

medidas estructurales

  • S5: Diques, hondonadas, estanques
Comentarios:

Specification of other vegetative measures: macrophytes, different species
Type of vegetative measures: in blocks

3.7 Principales tipos de degradación del suelo encarados con la Tecnología

degradación del agua

degradación del agua

  • Hq: reducción de la calidad de subterráneas
Comentarios:

Main causes of degradation: deforestation / removal of natural vegetation (incl. forest fires) (slash-and-burn practices), over-exploitation of vegetation for domestic use (firewood and charcoal making), overgrazing (free roaming run-wild donkeys, and small ruminants), urbanisation and infrastructure development (construction works near to body bodies (not respecting conservation areas)), discharges (point contamination of water) (indiscriminate disposal of effluents; excrements, drugs and surplus feed from fishes in net-cages), over abstraction / excessive withdrawal of water (for irrigation, industry, etc.) (abstraction of water from the reservoir without prior registration, not holding water use permits), change in temperature (supposed to be climate change induced), change of seasonal rainfall (high variability in semi-arid regions rather normal; though rainfall appears to fall in shorter periods), droughts (recurrent droughts are "normal", they appear to last for longer periods), poverty / wealth (limited livelihood sources in the rather remote municipality), inputs and infrastructure: (roads, markets, distribution of water points, other, …) (spoilage and low quality), education, access to knowledge and support services (often little value attached to natural resources), war and conflicts (conflicts among two families; conflicts among indigenous and commercial users), governance / institutional (restricted enforcement of existing rules; clientelism)

Secondary causes of degradation: soil management, crop management (annual, perennial, tree/shrub), industrial activities and mining, release of airborne pollutants (urban/industry…), disturbance of water cycle (infiltration / runoff), Heavy / extreme rainfall (intensity/amounts), wind storms / dust storms, floods, other natural causes (avalanches, volcanic eruptions, mud flows, highly susceptible natural resources, extreme topography, etc.) specify, population pressure, land tenure, labour availability

3.8 Prevención, reducción o restauración de la degradación del suelo

Especifique la meta de la Tecnología con relación a la degradación de la tierra:
  • reducir la degradación del suelo

4. Especificaciones técnicas, actividades de implementación, insumos y costos

4.1 Dibujo técnico de la Tecnología

Autor:

Stephan Pflugmacher-Lima, TUB, Faculty VI Planning Building Environment; Sekr. A1; Str des 17. Juni 152; 10623 Berlin; Germany

4.2 Especificaciones técnicas/ explicaciones del dibujo técnico

The constructed wetland termed a “Green Liver System” is 100m x 25m x 2.0m in size. It is divided into six parts (one third of the tank planted with Eichhornia crassipes the remainder with Egeria densa). The average outflow during the period was 1,800 m³/h. Point P1 is the catchment from the reservoir. Point P2 is the inlet that receives the discharge of effluent from 10 ponds with juvenile tilapia (Oreochromis niloticus). Point P3 is the stage after the treatment with Eichhornia crassipes. Point P4 is the stage of the treatment with Egeria densa. Point P5 is the outlet into a containment basin.

Location: Itacuruba. Pernambuco
Date: 2013

Technical knowledge required for field staff / advisors: high (It is a sophisticated system which requires close observation and monitoring. Site-specific adaptation might be necessary (for instance fencing to avoid goats entering the area).)
Technical knowledge required for land users: high (It is a sophisticated system which requires close observation and monitoring. It will be easier with some experience.)
Main technical functions: improvement of water quality, buffering / filtering water

In blocks
Vegetative material: O : other
Number of plants per (ha): 250000
Other species: Egeria densa; Eichhornia crassipes

Dam/ pan/ pond
Depth of ditches/pits/dams (m): 1.7
Width of ditches/pits/dams (m): 20
Length of ditches/pits/dams (m): 100

Wall/ barrier
Depth of ditches/pits/dams (m): 1.7
Width of ditches/pits/dams (m): ca 0.3
Length of ditches/pits/dams (m): ca 15

Construction material (other): tubes, valves
Specification of dams/ pans/ ponds: Capacity 3400m3
Dimensions of spillways: ca 100m

4.3 Información general sobre el cálculo de insumos y costos

Especifique la moneda usada para calcular costos:
  • dólares americanos
Indique la tasa de cambio de USD a la moneda local (si fuese relevante): 1 USD =:

3,17

Indique el costo promedio del salario de trabajo contratado por día:

25.00

4.4 Actividades de establecimiento

Actividad Tipo de medida Momento
1. Digging the pit, stabilizing the walls Vegetativas
2. Fencing Vegetativas
3. Building separation walls Vegetativas
4. Planting macrophytes in place Vegetativas

4.5 Costos e insumos necesarios para el establecimiento

Especifique insumo Unidad Cantidad Costos por unidad Costos totales por insumo % de los costos cubiertos por los usuarios de las tierras
Mano de obra Construction 1,0 3000,0 3000,0
Mano de obra Macrophyte installation 1,0 1900,0 1900,0
Equipo Truck for removal of soil 1,0 125,0 125,0
Material para plantas Macrophytes 100,0
Material para plantas Wooden fence posts 100,0
Material de construcción Walls/baffles (cement) 1,0 475,0 475,0
Material de construcción Barbed wire 1,0 315,0 315,0
Material de construcción Earthwork 1,0 250,0 250,0
Material de construcción Tubular elements 1,0 30,0 30,0
Otros Labour: Cutting fence posts 1,0 160,0 160,0
Otros Labour: SUpervision 1,0 1000,0 1000,0
Costos totales para establecer la Tecnología 7255,0

4.6 Actividades de establecimiento/ recurrentes

Actividad Tipo de medida Momento/ frequencia
1. Exchange macrophytes Vegetativas

4.7 Costos e insumos necesarios para actividades de mantenimiento/ recurrentes (por año)

Especifique insumo Unidad Cantidad Costos por unidad Costos totales por insumo % de los costos cubiertos por los usuarios de las tierras
Mano de obra Labour 1,0 3000,0 3000,0
Equipo Nylon fabric 1,0 15,0 15,0
Material para plantas Macrophytes 1,0 100,0
Indique los costos totales para mantenecer la Tecnología 3015,0
Comentarios:

Because of the tropical climate of Brazilian northeast there is a need to remove Eichhornia crassipes periodically because it grows very quickly as there is plenty nutrients and warm temperatures during all year. The cost of removal of the macrophytes is permanent and must be made monthly as the plant reaches adulthood it loses its capability in removing nutrients and gives it back to the water.

5. Entorno natural y humano

5.1 Clima

Lluvia anual
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Especificaciones/ comentarios sobre la cantidad de lluvia:

It happened to be less than 100mm in 2013. Very unreliable rainfall pattern. Rainfall from Dezember to May, most rain often in March

Zona agroclimática
  • semi-árida

Thermal climate class: tropics. Bsh according to Köppen classification

5.2 Topografía

Pendientes en promedio:
  • plana (0-2 %)
  • ligera (3-5%)
  • moderada (6-10%)
  • ondulada (11-15%)
  • accidentada (16-30%)
  • empinada (31-60%)
  • muy empinada (>60%)
Formaciones telúricas:
  • meseta/ planicies
  • cordilleras
  • laderas montañosas
  • laderas de cerro
  • pies de monte
  • fondo del valle
Zona altitudinal:
  • 0-100 m s.n.m.
  • 101-500 m s.n.m.
  • 501-1,000 m s.n.m
  • 1,001-1,500 m s.n.m
  • 1,501-2,000 m s.n.m
  • 2,001-2,500 m s.n.m
  • 2,501-3,000 m s.n.m
  • 3,001-4,000 m s.n.m
  • > 4,000 m s.n.m

5.3 Suelos

Profundidad promedio del suelo:
  • muy superficial (0-20 cm)
  • superficial (21-50 cm)
  • moderadamente profunda (51-80 cm)
  • profunda (81-120 cm)
  • muy profunda (>120 cm)
Textura del suelo (capa arable):
  • mediana (limosa)
Materia orgánica de capa arable:
  • baja (<1%)
Si se halla disponible, adjunte una descripción completa de los suelos o especifique la información disponible, por ej., tipo de suelo, pH/ acidez de suelo, capacidad de intercambio catiónico, nitrógeno, salinidad, etc. :

Soil fertility is low
Soil drainage/infiltration is poor
Soil water storage capacity is very low

5.4 Disponibilidad y calidad de agua

Agua subterránea:

< 5 m

Disponibilidad de aguas superficiales:

pobre/ ninguna

Calidad de agua (sin tratar):

agua potable de mala calidad (requiere tratamiento)

5.5 Biodiversidad

Diversidad de especies:
  • mediana

5.6 Las características de los usuarios de la tierra que aplican la Tecnología

Ingresos no agrarios:
  • > 50% de todo el ingreso
Nivel relativo de riqueza:
  • promedio
  • rico
Individuos o grupos:
  • individual/ doméstico
Género:
  • hombres
Indique otras características relevantes de los usuarios de las tierras:

Land users applying the Technology are mainly common / average land users
Population density: < 10 persons/km2
Annual population growth: 1% - 2%

5.7 Área promedio de la tierra que pertenece a o es arrendada por usuarios de tierra que aplican la Tecnología

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
¿Esto se considera de pequeña, mediana o gran escala (refiriéndose al contexto local)?
  • pequeña escala

5.8 Tenencia de tierra, uso de tierra y derechos de uso de agua

Tenencia de tierra:
  • individual, sin título
  • individual, con título
Derechos de uso de tierra:
  • individual
  • needs official registration and permission; heavy water use has a price
  • needs official registration and permission; heavy water use has a price

5.9 Acceso a servicios e infraestructura

salud:
  • pobre
  • moderado
  • bueno
educación:
  • pobre
  • moderado
  • bueno
asistencia técnica:
  • pobre
  • moderado
  • bueno
empleo (ej. fuera de la granja):
  • pobre
  • moderado
  • bueno
mercados:
  • pobre
  • moderado
  • bueno
energía:
  • pobre
  • moderado
  • bueno
caminos y transporte:
  • pobre
  • moderado
  • bueno
agua potable y saneamiento:
  • pobre
  • moderado
  • bueno
servicios financieros:
  • pobre
  • moderado
  • bueno
extension service:
  • pobre
  • moderado
  • bueno

6. Impactos y comentarios para concluir

6.1 Impactos in situ demostrados por la Tecnología

Impactos socioeconómicos

Disponibilidad y calidad de agua

disponibilidad de agua potable

disminuyó
incrementó

disponibilidad de agua para ganado

disminuyó
incrementó

disponibilidad de agua para irrigar

disminuyó
incrementó
Ingreso y costos

diversidad de fuentes de ingreso

disminuyó
incrementó
Comentarios/ especifique:

Biomass of macrophytes for potential ethanol production.

Otros impactos socioeconómicos

Labour cost

decreased
increased
Comentarios/ especifique:

Increase of maintenance costs as manual labor is required for management of macrophytes.

Impactos socioculturales

MST/ conocimiento de la degradación del suelo

disminuyó
mejoró
Comentarios/ especifique:

Better water management in a setting of decreasing seasonal rainfall.

Improved livelihoods and human well-being

decreased
increased
Comentarios/ especifique:

The technology contributed to improved water quality, which is directly related to people's health.

Impactos ecológicos

Ciclo de agua/ escurrimiento de sedimento

calidad de agua

disminuyó
incrementó

evaporación

incrementó
disminuyó
Comentarios/ especifique:

Any open water body is subjected to the very high potential evaporation in the region. Though, the surface of the system is very small as compared to the adjacent reservoir.

Suelo

cubierta del suelo

disminuyó
mejoró
Comentarios/ especifique:

The vegetation had to be removed in order to construct the artificial wetland.

Otros impactos ecológicos

Vulnerability

decreased
increased
Comentarios/ especifique:

A nylon grid prevents the macrophytes from occasionally breaking loose into the reservoir.
The ecology of the system is sort of fragile. If the macrophytes float too much, the system can break down.

6.4 Análisis costo-beneficio

¿Cómo se comparan los beneficios con los costos de establecimiento (desde la perspectiva de los usuarios de tierra)?
Ingresos a corto plazo:

positivo

Ingresos a largo plazo:

positivo

¿Cómo se comparan los beneficios con los costos de mantenimiento/ recurrentes (desde la perspectiva de los usuarios de tierra)?
Ingresos a corto plazo:

positivo

Ingresos a largo plazo:

positivo

6.5 Adopción de la Tecnología

Comentarios:

There is a little trend towards spontaneous adoption of the Technology. A broad adoption is not yet expectable at this stage of experimental analysis and testing. Few people did already express their interest.

6.7 Fuerzas/ ventajas/ oportunidades de la Tecnología

Fuerzas/ ventajas/ oportunidades desde la perspectiva del usuario de la tierra
If the environmental authority increases controls of how effluent from aquaculture ponds is handled (checking pollution and nutrient loads in the effluent which is usually returned to the reservoir without any treatment), the technology would help compliance with existing rules.
The technology can be constructed using locally available material.
Fuerzas/ ventajas/ oportunidades desde la perspectiva del compilador o de otra persona de referencia clave
Water purification is realized by using natural processes.
Among the advantages of adopting the Green Liver technology are the low costs, the speed of construction and it's relatively easy operation.

6.8 Debilidades/ desventajas/ riesgos de la Tecnología y formas de sobreponerse a ellos

Debilidades/ desventajas/ riesgos desde la perspectiva del usuario de la tierra ¿Cómo sobreponerse a ellas?
Additional manual labour increases costs (and hinders adoption) The more people use such techniques, for instance due to improved environmental monitoring and fines imposed, the more such extra expenditure will be accepted as regular running costs.
The management of the system is not simple. Many different and unexpected disturbances can occur. Experience and close, constant watch out is needed. Exchange of experience among users would facilitate its management. An updated list of threats could be helpful.
Debilidades/ desventajas/ riesgos desde la perspectiva del compilador o de otra persona de referencia clave ¿Cómo sobreponerse a ellas?
From time to time the macrophytes have to be removed, tubes may need cleaning and the system needs to be set up again. Sometimes, the removal of almost all water may be indicated. Major maintenance can cause peak labour needs. Manual labour required to monitor the system on a regular basis, and perform maintenance according to needs. Depending on the number and size of Green Liver Systems in action, caring for them can be a full-time job. The maintenance costs have to be well budgeted in the overall planning of costs and benefits of the related productive units.
The disposal of the removed macrophytes is still a problem to be solved. If the macrophytes have accumulated high levels of toxins, the biomass cannot be used for compost making or livestock feeding. The removed macrophytes should be analysed for their pollutant content. A biodigester could be the solution to the disposal of contaminated biomass, generating energy for the productive unit and possibly for the local population too.

7. Referencias y vínculos

7.1 Métodos/ fuentes de información

  • visitas de campo, encuestas de campo
  • entrevistas con usuarios de tierras

7.2 Vínculos a las publicaciones disponibles

Título, autor, año, ISBN:

Pflugmacher, S., Kühn, S., Lee, S.-H., Choi, J.-W., Baik, S., Kwon, K.-S., Contardo-Jara, V., 2015. Green Liver Systems® for water purification: Using the phytoremediation potential of aquatic macrophytes for the removal of different cyanobacterial toxins from water.

¿Dónde se halla disponible? ¿Costo?

AJPS 06 (09), 1607–1618. doi:10.4236/ajps.2015.69161.

Título, autor, año, ISBN:

Nimptsch, J., Wiegand, C., Pflugmacher, S., 2008. Cyanobacterial toxin elimination via bioaccumulation of MC-LR in aquatic macrophytes: An application of the “Green Liver Concept”

¿Dónde se halla disponible? ¿Costo?

Environ. Sci. Technol. 42 (22), 8552–8557. doi:10.1021/es8010404.

Vínculos y módulos

Expandir todo Colapsar todos

Módulos