Windbreaks of poplars combined with cotton (Niels Thevs)

Tree windbreaks within irrigated agriculture in Central Asia (Kirghizistan)

Description

Windbreaks of poplar trees (Populus nigra pyramidalis) are a major agroforestry system in irrigated agriculture across Central Asia. Such windbreaks reduce the overall water consumption of irrigated agriculture by 10-20% and increase farm income by 10-15%.

Windbreaks of trees are a major agroforestry system across Central Asia. The SLM technology presented here concentrates on windbreaks, chiefly of poplar trees (Populus nigra var. pyramidalis), within irrigated agriculture. These windbreaks of poplars have a long tradition as an agroforestry system in irrigated agriculture in the river basins of south and southeastern Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan. In Kazakhstan and northern parts of Kyrgyzstan, poplars are partly replaced by Elm (Ulmus minor) windbreaks.
After those five countries had become independent, a large share of the windbreaks was cut down primarily for fuelwood and secondarily for timber, as the energy supply system had broken down in the course of the disintegration of the Soviet Union. Such windbreaks reduce the overall water consumption of irrigated agriculture by 10-20% compared to open field conditions, depending on crops and tree spacing (Thevs et al., 2019: doi:10.3390/land8110167). The trees serve as an additional source of income, chiefly from sustainable harvest of the trees for timber. Windbreaks also help to increase crop yields. In total, farm income is increased by 10-15% over the rotation period of the trees (Thevs and Aliev, 2021: https://doi.org/10.1007/s10457-021-00617-7). The rotation period of poplars is between 12 and 20 years, depending on the climatic conditions, e.g. poplars in the Ferghana Valles reach DBH (diametre at breast height) values of 22-27 cm and tree heights of 18 m after 13 years.
In this recent assessment, it was found that windbreaks of single tree rows with distances between trees of 1 m had the best effects on water saving and increasing farm income. The most suitable spacing between windbreaks was found to be around 200 m.
Windbreaks are perceived differently by land users depending on the region and knowledge (Ruppert et al., 2020: doi:10.3390/su12031093). For example, land users in the Ferghana Valley perceived windbreaks positively and were planting them primarily with the aim to have wood resources in the near future. In contrast, land users in the northern part of Kyrgyzstan were afraid firstly that windbreaks shaded their crops, consumed space, and competed for water and nutrients, and secondly that planting windbreaks may cause conflicts with neighbours due to those negative connotations. Farmers with larger field plots were more open towards them.
Windbreaks are planted with 2-year-old poplar saplings, which are locally available. The preferred place to plant is along irrigation ditches or other existing field boundaries. If windbreaks are planted along irrigation ditches, they simply tap water from the moist soil or elevated groundwater adjacent to those ditches. Otherwise, the trees need to be irrigated like the crops. As furrow irrigation is the dominant irrigation practice throughout Central Asia, poplars can be integrated without further adjustments in the field of irrigation. Alongside irrigation ditches poplars can withstand high water levels in those ditches as they occur during irrigation periods. If farmers switch to drip irrigation, and irrigation ditches are no longer present, the trees will need to be supplied with a dripline as well. The locally available poplar cultivars do not need additional fertilizer, but profit from the fertilizer applied to the crop. Only if high yielding modern cultivars were to be used, additional fertilizer application to the trees would be needed to unfold their full potential.

Lieu

Lieu: Jalalabad Region, Chui Region, and Issyk Kul Region, Kirghizistan

Nbr de sites de la Technologie analysés: 10-100 sites

Géo-référence des sites sélectionnés
  • 77.70534, 42.74543
  • 75.63167, 42.82707
  • 75.61656, 42.78576
  • 74.03041, 42.70609
  • 72.58578, 40.92815

Diffusion de la Technologie: répartie uniformément sur une zone (approx. 0,1-1 km2)

Dans des zones protégées en permanence ?: Non

Date de mise en oeuvre: il y a entre 10-50 ans

Type d'introduction
Windbreak of poplars during spring soil preparation (Niels Thevs)
Agricultural landscape with tree wind breaks and cotton (Niels Thevs)

Classification de la Technologie

Principal objectif
  • améliorer la production
  • réduire, prévenir, restaurer les terres dégradées
  • préserver l'écosystème
  • protéger un bassin versant/ des zones situées en aval - en combinaison avec d'autres technologies
  • conserver/ améliorer la biodiversité
  • réduire les risques de catastrophes
  • s'adapter au changement et aux extrêmes climatiques et à leurs impacts
  • atténuer le changement climatique et ses impacts
  • créer un impact économique positif
  • créer un impact social positif
L'utilisation des terres
Les divers types d'utilisation des terres au sein du même unité de terrain: Oui - Agroforesterie

  • Terres cultivées
    • Cultures annuelles: céréales - orge, céréales - maïs, céréales - riz (de terres humides), céréales - blé de printemps, céréales - blé d'hiver, cultures de plantes à fibres - coton, cultures fourragères - luzerne, plantes à racines et à tubercules - pommes de terre
    • Plantations d’arbres ou de buissons
    Nombre de période de croissance par an: : 1
    Est-ce que les cultures intercalaires sont pratiquées? Non
    Est-ce que la rotation des cultures est appliquée? Non

Approvisionnement en eau
  • pluvial
  • mixte: pluvial-irrigué
  • pleine irrigation

But relatif à la dégradation des terres
  • prévenir la dégradation des terres
  • réduire la dégradation des terres
  • restaurer/ réhabiliter des terres sévèrement dégradées
  • s'adapter à la dégradation des terres
  • non applicable
Dégradation des terres traité
  • érosion éolienne des sols - Et: perte de la couche superficielle des sols (couche arable)
  • dégradation hydrique - Ha: aridification, Hg: changement du niveau des nappes phréatiques (eaux souterraines) et des aquifères
Groupe de GDT
  • agroforesterie
  • brise-vent/ plantations abris
Mesures de GDT
  • pratiques végétales - V1: Couverture d’arbres et d’arbustes

Dessin technique

Spécifications techniques
Windbreaks have their greatest impact when planted perpendicular to the main wind direction (or direction of the strongest winds). A whole grid of tree wind breaks running along all field plot borders will have a greater effect, as it prevents enhanced winds through a tunnel effect under changing wind directions. Tree wind breaks can be planted with distances of 50 m to 1000 m away from each other. The effect on the micro climate becomes less pronounced with increasing distance from tree wind breaks. Therefore, on a large field plot, say of 1000 m width between windbreaks, the micro climate averaged over the field plot will not differ much from the conditions without tree wind breaks. In contrast, on smaller field plots, say of 100 m width between windbreaks, the micro climate will differ significantly from open field conditions. This is also explained by the lines for temperature, air humidity, radiation, and in particular wind speed along an increasing distance from a given windbreak. Thereby, the distance from the windbreak is given in multiples of tree height.
In total, the best effects with regard to economic return and reduced water consumption come with a spacing of 200 m between tree wind breaks.
The best effects with regard to economic return and reduced water consumption were achieved with single tree lines. So, only one line of poplar trees is planted along the field borders. The planting distance between trees is 1 m to 1.20 m.
Poplar trees are locally available as trees with a length of 2 m to 2.50 m. Those trees are planted, best along the small irrigation ditches that run along the field borders. The local cultivar which is mainly used is a Populus nigra var. pyramidalis cultivar under the local name Mirza Terek. In principle, modern high yielding cultivars can be used as well; first research has shown a 2-3 times faster growth compared to the locally available cultivars at similar water and nutrient requirements.
Author: Niels Thevs

Mise en œuvre et entretien : activités, intrants et coûts

Calcul des intrants et des coûts
  • Les coûts sont calculés : par superficie de la Technologie (taille et unité de surface : 1 ha)
  • Monnaie utilisée pour le calcul des coûts : KGS
  • Taux de change (en dollars américains - USD) : 1 USD = 68.87 KGS
  • Coût salarial moyen de la main-d'oeuvre par jour : 750
Facteurs les plus importants affectant les coûts
Labour costs are the largest single cost item. In fact, in the cotton system a lot of labour is unpaid family labour or mutual help among neighbours. All labour was calculated in monetary terms, as the share of unpaid labour differed much between farms. This cotton tree wind break system is wide spread in the south of Kyrgyzstan. In the north of the country, tree wind breaks are combined with wheat, barley, corn, or alfalfa (lucerne). There, labour costs are lower as more machines are used (e.g. for harvest).
Activités de mise en place/ d'établissement
  1. Tree planting (Calendrier/ fréquence: March (first year))
  2. Maintenance of trees (Calendrier/ fréquence: April to September (first and second year))
  3. Harvest of trees (Calendrier/ fréquence: December to February (last year of tree rotation - after 15 years))
Intrants et coûts de mise en place (per 1 ha)
Spécifiez les intrants Unité Quantité Coûts par unité (KGS) Coût total par intrant (KGS) % des coût supporté par les exploitants des terres
Main d'œuvre
Labor costs for tree planting and maintenance (first year) man-days 3,0 750,0 2250,0 100,0
Labor costs for tree maintenance (second year) man-days 3,0 650,0 1950,0 100,0
Equipements
Labor costs to harvest trees (at tree age 15 years) man-days 3,0 70,0 210,0 100,0
Matériel végétal
Poplar saplings sapling 116,0 20,0 2320,0 100,0
Transport of saplings 500,0 1,0 500,0 100,0
Coût total de mise en place de la Technologie 7'230.0
Coût total de mise en place de la Technologie en dollars américains (USD) 104.98
Activités récurrentes d'entretien
  1. Soil preparation and sowing of annual crop (cotton) (Calendrier/ fréquence: March to April / every year)
  2. Irrigation, fertilizer application and other farm operations for the crop (Calendrier/ fréquence: April to August / every year)
  3. Harvest of the crop (cotton) (Calendrier/ fréquence: September to October / every year)
Intrants et coûts de l'entretien (per 1 ha)
Spécifiez les intrants Unité Quantité Coûts par unité (KGS) Coût total par intrant (KGS) % des coût supporté par les exploitants des terres
Main d'œuvre
Labor costs for soil preparation man-days 6,81 750,0 5107,5 100,0
Labor costs for sowing man-days 2,5 750,0 1875,0 100,0
Equipements
Labor costs for irrigation man-days 23,64 750,0 17730,0 100,0
Labor costs to apply fertilizer and plant protection man-days 3,34 750,0 2505,0 100,0
Labor costs for harvest (cotton) man-days 32,78 554,0 18160,12 100,0
Machine costs (rent) for soil preparation ha 1,0 10021,0 10021,0 100,0
Machine costs (rent) for sowing ha 1,0 1316,0 1316,0 100,0
Machine costs for fertilizer application ha 1,0 1200,0 1200,0 100,0
Matériel végétal
Seeds kg 50,0 101,0 5050,0 100,0
Engrais et biocides
Fertilizer kg 375,0 19,25 7218,75 100,0
Plant protection ha 1,0 1517,0 1517,0 100,0
Autre
Water fee ha 1,0 1014,0 1014,0 100,0
Coût total d'entretien de la Technologie 72'714.37
Coût total d'entretien de la Technologie en dollars américains (USD) 1'055.82

Environnement naturel

Précipitations annuelles
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1000 mm
  • 1001-1500 mm
  • 1501-2000 mm
  • 2001-3000 mm
  • 3001-4000 mm
  • > 4000 mm
Zones agro-climatiques
  • humide
  • subhumide
  • semi-aride
  • aride
Spécifications sur le climat
Precipitation maximum during spring and dry summers, which makes irrigation necessary.
Nom de la station météorologique : Bazarkorgon, Kara Balta, Kemin
hot continental and semi-arid
Pentes moyennes
  • plat (0-2 %)
  • faible (3-5%)
  • modéré (6-10%)
  • onduleux (11-15%)
  • vallonné (16-30%)
  • raide (31-60%)
  • très raide (>60%)
Reliefs
  • plateaux/ plaines
  • crêtes
  • flancs/ pentes de montagne
  • flancs/ pentes de colline
  • piémonts/ glacis (bas de pente)
  • fonds de vallée/bas-fonds
Zones altitudinales
  • 0-100 m
  • 101-500 m
  • 501-1000 m
  • 1001-1500 m
  • 1501-2000 m
  • 2001-2500 m
  • 2501-3000 m
  • 3001-4000 m
  • > 4000 m
La Technologie est appliquée dans
  • situations convexes
  • situations concaves
  • non pertinent
Profondeurs moyennes du sol
  • très superficiel (0-20 cm)
  • superficiel (21-50 cm)
  • modérément profond (51-80 cm)
  • profond (81-120 cm)
  • très profond (>120 cm)
Textures du sol (de la couche arable)
  • grossier/ léger (sablonneux)
  • moyen (limoneux)
  • fin/ lourd (argile)
Textures du sol (> 20 cm sous la surface)
  • grossier/ léger (sablonneux)
  • moyen (limoneux)
  • fin/ lourd (argile)
Matière organique de la couche arable
  • abondant (>3%)
  • moyen (1-3%)
  • faible (<1%)
Profondeur estimée de l’eau dans le sol
  • en surface
  • < 5 m
  • 5-50 m
  • > 50 m
Disponibilité de l’eau de surface
  • excès
  • bonne
  • moyenne
  • faible/ absente
Qualité de l’eau (non traitée)
  • eau potable
  • faiblement potable (traitement nécessaire)
  • uniquement pour usage agricole (irrigation)
  • eau inutilisable
La qualité de l'eau fait référence à: eaux de surface
La salinité de l'eau est-elle un problème ?
  • Oui
  • Non

Présence d'inondations
  • Oui
  • Non
Diversité des espèces
  • élevé
  • moyenne
  • faible
Diversité des habitats
  • élevé
  • moyenne
  • faible

Caractéristiques des exploitants des terres appliquant la Technologie

Orientation du système de production
  • subsistance (auto-approvisionnement)
  • exploitation mixte (de subsistance/ commerciale)
  • commercial/ de marché
Revenus hors exploitation
  • moins de 10% de tous les revenus
  • 10-50% de tous les revenus
  • > 50% de tous les revenus
Niveau relatif de richesse
  • très pauvre
  • pauvre
  • moyen
  • riche
  • très riche
Niveau de mécanisation
  • travail manuel
  • traction animale
  • mécanisé/ motorisé
Sédentaire ou nomade
  • Sédentaire
  • Semi-nomade
  • Nomade
Individus ou groupes
  • individu/ ménage
  • groupe/ communauté
  • coopérative
  • employé (entreprise, gouvernement)
Genre
  • femmes
  • hommes
Âge
  • enfants
  • jeunes
  • personnes d'âge moyen
  • personnes âgées
Superficie utilisée par ménage
  • < 0,5 ha
  • 0,5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1 000 ha
  • 1 000-10 000 ha
  • > 10 000 ha
Échelle
  • petite dimension
  • moyenne dimension
  • grande dimension
Propriété foncière
  • état
  • entreprise
  • communauté/ village
  • groupe
  • individu, sans titre de propriété
  • individu, avec titre de propriété
Droits d’utilisation des terres
  • accès libre (non organisé)
  • communautaire (organisé)
  • loué
  • individuel
Droits d’utilisation de l’eau
  • accès libre (non organisé)
  • communautaire (organisé)
  • loué
  • individuel
Accès aux services et aux infrastructures
santé

pauvre
bonne
éducation

pauvre
bonne
assistance technique

pauvre
bonne
emploi (par ex. hors exploitation)

pauvre
bonne
marchés

pauvre
bonne
énergie

pauvre
bonne
routes et transports

pauvre
bonne
eau potable et assainissement

pauvre
bonne
services financiers

pauvre
bonne

Impact

Impacts socio-économiques
Production agricole
en baisse
en augmentation


There is agreement in the scientific literature that tree windbreaks cause crop yield increases of 10-15%. Some references even claim crop yield increases of up to 40%.

production fourragère
en baisse
en augmentation


The leaves of the trees are partly used as fodder. But that additional fodder only is a minor contribution to the overall fodder demand.

production de bois
en baisse
en augmentation

Quantité avant la GDT: none
Quantité après la GDT: 53 m³/ha after 15 years
Trees are harvested at an age of 15 years. Such trees have an average tree height and DBH of 19 m and 27 cm, respectively. Given a form factor of 0.42 one tree yields a stem volume of 0.457 m³. A number of 116 trees is assigned to 1 ha, which results in 53 m³/ha.

surface de production (nouvelles terres cultivées/ utilisées)
en baisse
en augmentation

Quantité avant la GDT: 1 ha cropland
Quantité après la GDT: 0.9 ha cropland
Tree wind breaks occupy space so that the area available to the crop gets reduced. While the trees do not occupy substantial space during their first years of growth, they occupy about 10% of the cropland at and age of 10-15 years. This calculation was made for a spacing between tree wind breaks of 200 m.

gestion des terres
entravé
simplifié


Tree windbreaks at a spacing of 200 m do not impede farm operations, while narrower spacing may disturb farm operations, in particular with machines.

demande pour l'eau d'irrigation
en augmentation
en baisse

Quantité avant la GDT: 904 mm over the cropping season
Quantité après la GDT: 777 mm over the cropping season
ETc (water consumption) of cotton is 904 mm over the whole cropping season. Tree windbreaks (arranged as a rectangular grid with a spacing of 200 m) with cotton together consume 777 mm over the whole cropping season. (cf. comment below under evaporation)

dépenses pour les intrants agricoles
en augmentation
en baisse


There are expenses for tree planting material and labour associated to tree planting and maintenance during the first and second year.

revenus agricoles
en baisse
en augmentation

Quantité avant la GDT: Accumulated NPV after 15 years: 214,000 KSG/ha
Quantité après la GDT: Accumulated NPV after 15 years: 232,000 KSG/ha
The accumulated NPV over 15 years for cotton versus cotton and tree wind breaks were compared to assess the financial gain from tree wind break systems. 15 years is the tree age at which the tree wind breaks are harvested. Costs and revenues were discounted at a discount rate of 17.5%.

diversité des sources de revenus
en baisse
en augmentation


Wood resources are added as additional income next to crops.

Impacts socioculturels
Impacts écologiques
évaporation
en augmentation
en baisse

Quantité avant la GDT: 904 mm over the cropping season
Quantité après la GDT: 777 mm over the cropping season
ETc (water consumption) of cotton is 904 mm over the whole cropping season. Tree win breaks (arranged as a rectangular grid with a spacing of 200 m) with cotton together consume 777 mm over the whole cropping season. (cf. comment above under irrigation water demand)

humidité du sol
en baisse
en augmentation


As tree wind breaks reduce evapotranspiration, they help to maintain soil moisture.

perte en sol
en augmentation
en baisse


Wind erosion did not play a role in this example of cotton combined with tree windbreaks. Though in other parts of Kyrgyzstan or Central Asia stronger winds prevail than in this very example. There, tree wind breaks do combat wind erosion.

salinité
en augmentation
en baisse


Salinity did not play a role in this example of cotton combined with tree windbreaks. Though in other parts of Kyrgyzstan or Central Asia salinity does play a role. There, windbreaks, in particular poplar trees, help to lower the groundwater levels due to their high water consumption, which helps to combat soil salinization.

matière organique du sol/ au dessous du sol C
en baisse
en augmentation


The leaves of the trees partly end up as litter on the soil surface. The trees' root systems add to the below ground biomass. Both contribute to the formation of soil organic matter. Though, this is limited to a small area adjacent to the tree wind breaks and does not translate into the area of the cropland.

Impacts hors site
disponibilité de l’eau (nappes phréatiques, sources)
en baisse
en augmentation


As the evapotranspiration (water consumption) and the demand for irrigation water are reduced, the general availability of water is increased.

dommages sur les champs voisins
en augmentation
réduit


Neighboring fields are partly shaded.

Analyse coûts-bénéfices

Bénéfices par rapport aux coûts de mise en place
Rentabilité à court terme
très négative
très positive

Rentabilité à long terme
très négative
très positive

Bénéfices par rapport aux coûts d'entretien
Rentabilité à court terme
très négative
très positive

Rentabilité à long terme
très négative
très positive

Changement climatique

Autres conséquences liées au climat
Glacier retreat which will result in reduced river flows and supply of water for irrigation

pas bien du tout
très bien

Adoption et adaptation de la Technologie

Pourcentage d'exploitants des terres ayant adopté la Technologie dans la région
  • cas isolés/ expérimentaux
  • 1-10%
  • 11-50%
  • > 50%
Parmi tous ceux qui ont adopté la Technologie, combien d'entre eux l'ont fait spontanément, à savoir sans recevoir aucune incitation matérielle ou aucun paiement ?
  • 0-10%
  • 11-50%
  • 51-90%
  • 91-100%
La Technologie a-t-elle été récemment modifiée pour s'adapter à l'évolution des conditions ?
  • Oui
  • Non
A quel changement ?
  • changements/ extrêmes climatiques
  • évolution des marchés
  • la disponibilité de la main-d'œuvre (par ex., en raison de migrations)
During the Soviet Union times, when tree windbreaks were promoted, multi-row tree windbreaks were planted. Today, farmers prefer single tree lines, in order not to sacrifice too much crop space.

Conclusions et enseignements tirés

Points forts: point de vue de l'exploitant des terres
  • Tree windbreaks deliver wood resources for self consumption or to be sold on markets.
  • In more windy parts of Kyrgyzstan or Central Asia, land users see the advantage of reduced wind speed for crop quality and snow trap to build up soil moisture.
Points forts: point de vue du compilateur ou d'une autre personne-ressource clé
  • Tree windbreaks provide additional income as they deliver wood resources.
  • Tree windbreaks reduce overall water consumption in irrigated agriculture.
  • In more windy parts of Kyrgyzstan or Central Asia, land users see the advantage of reduced wind speed for crop quality and snow trap to build up soil moisture.
Faiblesses/ inconvénients/ risques: point de vue de l'exploitant des terrescomment surmonter
  • Tree windbreaks shade the crop. Capacity building and explain that this is a minor effect.
  • Tree windbreaks compete with the crops for nutrients and water. Capacity building and explain that this is a minor effect.
  • Tree windbreaks disturb farm operations. Capacity building and explain that this is a minor effect.
  • Tree windbreaks cause conflict with neighbours, as neighbours may share those negative perceptions. Capacity building and explain that this is a minor effect and promote cooperation between neighbors to share benefits from tree wind breaks.
Faiblesses/ inconvénients/ risques: point de vue du compilateur ou d'une autre personne-ressource clécomment surmonter
  • Financial resources are needed to establish tree windbreaks, while the revenue from the harvest of trees only can be realized in the future. Access to suitable finance.

Références

Compilateur
  • Niels Thevs
Editors
Examinateur
  • William Critchley
  • Rima Mekdaschi Studer
Date de mise en oeuvre: 9 mars 2021
Dernière mise à jour: 18 mai 2021
Personnes-ressources
Description complète dans la base de données WOCAT
Données de GDT correspondantes
La documentation a été facilitée par
Institution Projet
Références clés
  • Thevs N, Aliev K (2021): Agro-economy of tree windbreak systems in Kyrgyzstan, Central Asia. Agroforestry Systems. https://doi.org/10.1007/s10457-021-00617-7: Agroforestry Systems, EUR 37.40
  • Ruppert D, Welp M, Spies M, Thevs N (2020): Farmers’ perceptions of tree shelterbelts on agricultural land in rural Kyrgyzstan. Sustainability 12:1093. doi:10.3390/su12031093: https://www.mdpi.com/2071-1050/12/3/1093 - open access
  • Thevs N, Gombert AJ, Strenge E, Lleshi R, Aliev K, Emileva B (2019): Tree wind breaks in Central Asia and their effects on agricultural water consumption. Land, 8: 167-183. https://doi.org/10.3390/land8110167: https://www.mdpi.com/2073-445X/8/11/167 - open access
  • Strenge E, Thevs N, Aliev K, Eraaliev M, Lang P, Baibagysov A (2018): Water consumption of Populus alba trees in tree shelterbelt systems in Central Asia. Central Asian Journal for Water Resources 4, 48-62: https://www.water-ca.org/api/v1/articles/5955-water-consumption-of-populus-alba-trees-in-tree-shelterbelt-systems-in-central-asia.pdf - open access
  • Thevs N, Aliev K, Lleshi R (accepted): Water Productivity of Tree Wind Break Agroforestry Systems in Irrigated Agriculture – an example from Ferghana Valley, Kyrgyzstan. Trees, Forests, and People: will be open access
Liens vers des informations pertinentes disponibles en ligne
This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0 International