Ouvrage de traitement de ravines réalisé dans le village de Dankari, commune de Koumbia (Province du Tuy) au Burkina Faso (SOME I. Justine)

Traitement de ravines (Burkina Faso)

Description

Le traitement de ravine consiste à tapisser les parois et à constituer une barrière partielle sur la ravine à travers les seuils en pierres, et si nécessaire aussi des sacs remplis en terre.

L'érosion en ravines est l'enlèvement de terre le long des conduites de drainage par le ruissellement des eaux de surface lorsqu’il est dénudé de la végétation protectrice. À moins que des mesures ne soient prises pour stabiliser la perturbation, les ravines continueront à se déplacer par érosion régressive ou par affaissement des parois latérales. Elles peuvent atteindre des dizaines de mètres de profondeur et largeur dans les sols fragiles et sédimentaires. Il est beaucoup plus facile et plus économique d'effectuer des travaux de réparation dans les premiers stades des ravines nouvellement formées. Les grandes ravines qui n'ont pas été contrôlées sont difficiles et coûteux à réparer.

Le traitement des ravines doit être effectué pour freiner la vitesse de l'eau du ruissellement et arrêter l’érosion linéaire du sol et ainsi prévenir la perte des terres productives.

Le seuil en pierres sèches non-cimentées convient bien pour les petits ravins jusqu'à 2m de large et 1 m de profondeur, ayant une pente faible à moyenne, un substrat moyennement tendre à dur et recommandé sur les terrains de culture, les périmètres de reboisement, les terrains de parcours, etc. (Par contre cette technologie ne suffit pas pour des ravins plus grands, des fortes pentes et un substrat très fragiles)

La hauteur de chaque seuil en pierre dépend des conditions de la zone mais ne doit dépasser en aucun cas 1,50 m et la largeur 1 m, la longueur étant fonction de la section de la ravine (largeur et forme). Un déversoir est aménagé à la surface aval du seuil au niveau central et perpendiculairement à l’axe de la ravine. Sa largeur doit varie selon le volume d’eau qui passe dans la ravine Pour des petits ravins et les seuils rectilignes, on propose pour le déversoir une longueur entre 1 m et 1,50 m, une largeur de 1 m et une hauteur de 0,5m. Les ailes du seuil en pierres devraient être bien ancrées sur les berges de la ravine de manière à en augmenter la rigidité et stabilité.

Les seuils ont pour objectifs freiner la vélocité de l’eau et casser l’énergie de l’eau, et ainsi stopper l'érosion et provoquer une sédimentation en amont de l'ouvrage, afin de réduire la pente de la ravine et permettre sa ré-végétation. Pour les ravines profondes, lorsque les seuils sont remplis du sol en amont, une autre série de seuils alternés peut être construit afin de créer une section parabolique stable pour le passage de l’eau et la re-végétation avec des espèces protectrices.

Cette technologie permet de contrôler le ravinement, et favoriser l’infiltration et conserver l’humidité du sol tout en contribuant à la réalimentation de la nappe phréatique et à la récupération des terres.
Les principales activités nécessaires aux traitements des ravines sont:
•Dessin de l’ouvrage :
•lever les courbes de niveau perpendiculairement à la ravine par un niveau à eau ou un triangle à pente;
•détermination de l’emprise (surface de provenance et estimation du volume d’eau de ruissellement);
•détermination de la hauteur de la ravine et de la largeur de la partie à traiter égale à 2 ou 3 fois la hauteur de la ravine).
•Construction de l’ouvrage
•déblai de la tranchée d’ancrage : creuser 10 à 20 cm de profondeur sur la largeur de la partie à traiter (la terre issue du creusage est déposée en amont
•construction de la digue en déposant d’abord d'une couche de gravillon puis les gros moellons au fond et au fur à mesure les moyens et enfin les petits moellons;
•réalisation des ailes aux extrémités des ravines suivant la courbe de niveau et avec des moellons et sacs en terre (les ailes sont souvent un point faible du seuil pendant une crue et elles doivent entre bien protèges avec les moellons et/ou sacs en terre).

Les intrants nécessaires à la mise en place de cette technologie sont la terre, le gravillon et les moellons et les brouettes, pics, pèles etc. Il faudrait de la main d’œuvre ayant expérience et accès à un véhicule pour transporter les intrants.

La technologie est adaptée à toutes types du sol et formes de terrain, facile à construire et peu coûteux surtout lorsque la pierre est disponible. En outre, elle a un Impact immédiat sur l'évolution du ravin permettant la correction de la pente en contribuant ainsi à la réduction de la vitesse d'écoulement et par conséquent le control du processus de ravinement. Par ailleurs, elle favorise l’infiltration, conserve l’humidité du sol, contribue à la réalimentation de la nappe phréatique et récupère les terres (surtout les pentes des ravines pour une végétation utile come le bambou, le vétiver ou des herbes fourragères). Il faudrait un entretien au début de la saison de pluies et des visites réguliers pour contrôler son fonctionnement.

Les exploitants affirment que cette technologie permet un accroissement significatif de leurs rendements agricoles à travers infiltration de l’eau et récupération de la nappe phréatique. Toutefois, ils estiment que le traitement des ravines nécessite des moyens financiers et humains importants. Un appui des partenaires au développement est donc à envisager dans le cadre de la vulgarisation de cette technologie.

Lieu

Lieu: Tiarako (Commune de Satiri), Hauts-Bassins, Province du Houet, Burkina Faso

Nbr de sites de la Technologie analysés: 2-10 sites

Géo-référence des sites sélectionnés
  • -4.11937, 11.45416

Diffusion de la Technologie: répartie uniformément sur une zone (approx. 0,1-1 km2)

Dans des zones protégées en permanence ?: Non

Date de mise en oeuvre: il y a moins de 10 ans (récemment)

Type d'introduction
Vue longitudinale d'un traitement de ravines dans le village de Sébédougou dans le dans le micro-bassin versant de Koumbia. (ABOU Moussa)
-

Classification de la Technologie

Principal objectif
  • améliorer la production
  • réduire, prévenir, restaurer les terres dégradées
  • préserver l'écosystème
  • protéger un bassin versant/ des zones situées en aval - en combinaison avec d'autres technologies
  • conserver/ améliorer la biodiversité
  • réduire les risques de catastrophes
  • s'adapter au changement et aux extrêmes climatiques et à leurs impacts
  • atténuer le changement climatique et ses impacts
  • créer un impact économique positif
  • créer un impact social positif
L'utilisation des terres
Les divers types d'utilisation des terres au sein du même unité de terrain: Oui - Agroforesterie

  • Terres cultivées
    • Cultures annuelles: céréales - maïs, céréales - sorgho, cultures de plantes à fibres - coton
    • Plantations d’arbres ou de buissons: raisins, karité (noix de karité)
    Nombre de période de croissance par an: : 1
    Est-ce que les cultures intercalaires sont pratiquées? Non
    Est-ce que la rotation des cultures est appliquée? Oui

Approvisionnement en eau
  • pluvial
  • mixte: pluvial-irrigué
  • pleine irrigation

But relatif à la dégradation des terres
  • prévenir la dégradation des terres
  • réduire la dégradation des terres
  • restaurer/ réhabiliter des terres sévèrement dégradées
  • s'adapter à la dégradation des terres
  • non applicable
Dégradation des terres traité
  • érosion hydrique des sols - Wt: perte de la couche superficielle des sols (couche arable)/ érosion de surface, Wg: ravinement/ érosion en ravines
  • érosion éolienne des sols - Et: perte de la couche superficielle des sols (couche arable), Ed: déflation et déposition, Eo: effets hors site de la dégradation
Groupe de GDT
  • mesures en travers de la pente
Mesures de GDT
  • structures physiques - S2: Diguettes, digues , S6: Murs, barrières, palissades, clôtures

Dessin technique

Spécifications techniques
•Longueur et largeur de la ravine sont fonction de la section (coupe) de la ravine ;
•Hauteur du seuil (Hs): 1,50 m maximum;
•Épaisseur du seuil (Es): 1m a la base;
•Longueur du tapis à fouille en blocs de pierres bien damés en aval du seuil (lt) entre 1 et 1,50 m ;
•Épaisseur du déversoir (Ed): 1 m ;
•Hauteur du déversoir (Hd): 0,50 m ;
•Pente de l’aval du seuil (P) : 20%.

La distance entre les seuils dans la ravine dépend de la pente longitudinale de la ravine et de la hauteur à donner aux ouvrages.
Author: ALI BLALI
Coupe longitudinale d'un seuil en pierres sèches.
Les pierres doivent être disposées soigneusement de façon à ce que l'ouvrage soit bien stable.

Les seuils peuvent être aussi construits avec des piquets et fascines (branchages) ou en gabions (cages de fil de fer remplis avec des moellons) ou en ciment avec l’aide d’un expert en génie rural ou civil.
Author: ALI BLALI

Mise en œuvre et entretien : activités, intrants et coûts

Calcul des intrants et des coûts
  • Les coûts sont calculés : par entité de la Technologie (unité : Mètre linéaire)
  • Monnaie utilisée pour le calcul des coûts : sans objet
  • Taux de change (en dollars américains - USD) : 1 USD = 613.5
  • Coût salarial moyen de la main-d'oeuvre par jour : 4333,67 FCFA/mètre linéaire
Facteurs les plus importants affectant les coûts
Les facteurs les plus importants affectant les coûts sont la proximité des moellons et la disponibilité de la main d'œuvre.
Activités de mise en place/ d'établissement
  1. Implantation (Calendrier/ fréquence: Saison sèche)
  2. Détermination de l'emprise (Calendrier/ fréquence: Saison sèche)
  3. Déblai de la tranchée d’ancrage (Calendrier/ fréquence: Saison sèche)
  4. Pose des moellons (Calendrier/ fréquence: Saison sèche)
Intrants et coûts de mise en place (per Mètre linéaire)
Spécifiez les intrants Unité Quantité Coûts par unité (sans objet) Coût total par intrant (sans objet) % des coût supporté par les exploitants des terres
Main d'œuvre
Implantation Ml 1,0 166,67 166,67
Ouverture des tranchées et construction Ml 1,0 4166,67 4166,67
Equipements
Coûts du petit matériel Ml 1,0 833,33 833,33
Matériaux de construction
Achat de moellons Ml 1,0 10000,0 10000,0
Autre
Frais de suivi Ml 1,0 555,56 555,56
Frais de coordination Ml 1,0 277,78 277,78
Coût total de mise en place de la Technologie 16'000.01
Coût total de mise en place de la Technologie en dollars américains (USD) 26.08
Activités récurrentes d'entretien
  1. Activité d'entretien de la diguette (Calendrier/ fréquence: Avant la saison des pluies)
Intrants et coûts de l'entretien (per Mètre linéaire)
Spécifiez les intrants Unité Quantité Coûts par unité (sans objet) Coût total par intrant (sans objet) % des coût supporté par les exploitants des terres
Autre
Entretien et réparation de la ravine Ml 1,0 555,56 555,56 100,0
Coût total d'entretien de la Technologie 555.56
Coût total d'entretien de la Technologie en dollars américains (USD) 0.91

Environnement naturel

Précipitations annuelles
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1000 mm
  • 1001-1500 mm
  • 1501-2000 mm
  • 2001-3000 mm
  • 3001-4000 mm
  • > 4000 mm
Zones agro-climatiques
  • humide
  • subhumide
  • semi-aride
  • aride
Spécifications sur le climat
Précipitations moyennes annuelles en mm : 900.0
Le climat de la région des Hauts-Bassins dont relève le village de Tiarako (commune de Satiri) est tropical de type nord-soudanien et sud soudanien. Ce climat est marqué par deux (02) grandes saisons : une saison humide qui dure 06 à 07 mois (mai à octobre/novembre) et une saison sèche qui s'étend sur 05 à 06 mois (novembre/décembre à avril). La pluviométrie annuelle est relativement abondante et comprise entre 800 et 1200 mm.
Nom de la station météorologique : Poste pluviométrique de Satiri
Les températures moyennes varient entre 24°c et 30°c avec une amplitude thermique relativement faible de 5°c.
Pentes moyennes
  • plat (0-2 %)
  • faible (3-5%)
  • modéré (6-10%)
  • onduleux (11-15%)
  • vallonné (16-30%)
  • raide (31-60%)
  • très raide (>60%)
Reliefs
  • plateaux/ plaines
  • crêtes
  • flancs/ pentes de montagne
  • flancs/ pentes de colline
  • piémonts/ glacis (bas de pente)
  • fonds de vallée/bas-fonds
Zones altitudinales
  • 0-100 m
  • 101-500 m
  • 501-1000 m
  • 1001-1500 m
  • 1501-2000 m
  • 2001-2500 m
  • 2501-3000 m
  • 3001-4000 m
  • > 4000 m
La Technologie est appliquée dans
  • situations convexes
  • situations concaves
  • non pertinent
Profondeurs moyennes du sol
  • très superficiel (0-20 cm)
  • superficiel (21-50 cm)
  • modérément profond (51-80 cm)
  • profond (81-120 cm)
  • très profond (>120 cm)
Textures du sol (de la couche arable)
  • grossier/ léger (sablonneux)
  • moyen (limoneux)
  • fin/ lourd (argile)
Textures du sol (> 20 cm sous la surface)
  • grossier/ léger (sablonneux)
  • moyen (limoneux)
  • fin/ lourd (argile)
Matière organique de la couche arable
  • abondant (>3%)
  • moyen (1-3%)
  • faible (<1%)
Profondeur estimée de l’eau dans le sol
  • en surface
  • < 5 m
  • 5-50 m
  • > 50 m
Disponibilité de l’eau de surface
  • excès
  • bonne
  • moyenne
  • faible/ absente
Qualité de l’eau (non traitée)
  • eau potable
  • faiblement potable (traitement nécessaire)
  • uniquement pour usage agricole (irrigation)
  • eau inutilisable
La qualité de l'eau fait référence à: à la fois les eaux souterraines et de surface
La salinité de l'eau est-elle un problème ?
  • Oui
  • Non

Présence d'inondations
  • Oui
  • Non
Diversité des espèces
  • élevé
  • moyenne
  • faible
Diversité des habitats
  • élevé
  • moyenne
  • faible

Caractéristiques des exploitants des terres appliquant la Technologie

Orientation du système de production
  • subsistance (auto-approvisionnement)
  • exploitation mixte (de subsistance/ commerciale)
  • commercial/ de marché
Revenus hors exploitation
  • moins de 10% de tous les revenus
  • 10-50% de tous les revenus
  • > 50% de tous les revenus
Niveau relatif de richesse
  • très pauvre
  • pauvre
  • moyen
  • riche
  • très riche
Niveau de mécanisation
  • travail manuel
  • traction animale
  • mécanisé/ motorisé
Sédentaire ou nomade
  • Sédentaire
  • Semi-nomade
  • Nomade
Individus ou groupes
  • individu/ ménage
  • groupe/ communauté
  • coopérative
  • employé (entreprise, gouvernement)
Genre
  • femmes
  • hommes
Âge
  • enfants
  • jeunes
  • personnes d'âge moyen
  • personnes âgées
Superficie utilisée par ménage
  • < 0,5 ha
  • 0,5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1 000 ha
  • 1 000-10 000 ha
  • > 10 000 ha
Échelle
  • petite dimension
  • moyenne dimension
  • grande dimension
Propriété foncière
  • état
  • entreprise
  • communauté/ village
  • groupe
  • individu, sans titre de propriété
  • individu, avec titre de propriété
Droits d’utilisation des terres
  • accès libre (non organisé)
  • communautaire (organisé)
  • loué
  • individuel
Droits d’utilisation de l’eau
  • accès libre (non organisé)
  • communautaire (organisé)
  • loué
  • individuel
Accès aux services et aux infrastructures
santé

pauvre
bonne
éducation

pauvre
bonne
assistance technique

pauvre
bonne
emploi (par ex. hors exploitation)

pauvre
bonne
marchés

pauvre
bonne
énergie

pauvre
bonne
routes et transports

pauvre
bonne
eau potable et assainissement

pauvre
bonne
services financiers

pauvre
bonne

Impact

Impacts socio-économiques
Production agricole
en baisse
en augmentation

Quantité avant la GDT: 15 à 20 sacs
Quantité après la GDT: 50 à 60 sacs
Les exploitants affirment qu'avant la mise en œuvre des traitements de ravines, ils produisaient 15 à 20 sacs de maïs, depuis l'adoption de cette technologie leur niveau de production varie entre 30 à 40 sacs à l'hectare. Ce résultat est atteint au bout de trois ans à travers l'utilisation des semences, la fumure organique et le respect des itinéraires techniques de production.

qualité des cultures
en baisse
en augmentation

dépenses pour les intrants agricoles
en augmentation
en baisse


L'augmentation de la matière organique du sol consécutive au dépôt de sédiments entraine une baisse des dépenses en intrants (urée et NPK).

revenus agricoles
en baisse
en augmentation

Impacts socioculturels
sécurité alimentaire/ autosuffisance
réduit
amélioré

possibilités de loisirs
réduit
amélioré

connaissances sur la GDT/ dégradation des terres
réduit
amélioré

Impacts écologiques
ruissellement de surface
en augmentation
en baisse

nappes phréatiques/ aquifères
en baisse
rechargé

couverture du sol
réduit
amélioré

perte en sol
en augmentation
en baisse

matière organique du sol/ au dessous du sol C
en baisse
en augmentation


La technologie dissipe l'énergie de l'eau à travers une amélioration de son infiltration et contribue à la sédimentation ce qui participe à l'augmentation de la matière organique du sol en vue d'une meilleure valorisation agricole.

impacts des inondations
en augmentation
en baisse

Impacts hors site
disponibilité de l’eau (nappes phréatiques, sources)
en baisse
en augmentation

inondations en aval (indésirables)
en augmentation
réduit

dommages sur les champs voisins
en augmentation
réduit

dommages sur les infrastructures publiques/ privées
en augmentation
réduit

Analyse coûts-bénéfices

Bénéfices par rapport aux coûts de mise en place
Rentabilité à court terme
très négative
très positive

Rentabilité à long terme
très négative
très positive

Bénéfices par rapport aux coûts d'entretien
Rentabilité à court terme
très négative
très positive

Rentabilité à long terme
très négative
très positive

Changement climatique

Changements climatiques progressifs
températures saisonnières augmente

pas bien du tout
très bien
Saison: saison sèche Réponse : pas connu

Adoption et adaptation de la Technologie

Pourcentage d'exploitants des terres ayant adopté la Technologie dans la région
  • cas isolés/ expérimentaux
  • 1-10%
  • 11-50%
  • > 50%
Parmi tous ceux qui ont adopté la Technologie, combien d'entre eux l'ont fait spontanément, à savoir sans recevoir aucune incitation matérielle ou aucun paiement ?
  • 0-10%
  • 11-50%
  • 51-90%
  • 91-100%
La Technologie a-t-elle été récemment modifiée pour s'adapter à l'évolution des conditions ?
  • Oui
  • Non
A quel changement ?
  • changements/ extrêmes climatiques
  • évolution des marchés
  • la disponibilité de la main-d'œuvre (par ex., en raison de migrations)

Conclusions et enseignements tirés

Points forts: point de vue de l'exploitant des terres
  • La technologie lutte contre l'érosion hydrique et le ruissellement
  • La technologie lutte contre la dégradation chimique et organique des sols
  • La technologie atténue les effets de la sécheresse.
Points forts: point de vue du compilateur ou d'une autre personne-ressource clé
  • Le traitement des ravines réduit le ruissellement et l’érosion éolienne.
  • La technologie favorise l’infiltration de l’eau dans le sol et une sédimentation en amont du sol et d’autres matériaux organiques transportés par l’eau (comme la paille, les buses d’animaux, diverses résidus organiques).
  • La technologie contribue à la récupération des sols dégradés.
Faiblesses/ inconvénients/ risques: point de vue de l'exploitant des terrescomment surmonter
  • Les difficultés de transport des moellons constitue le principal risque à la mise en œuvre de cette technologie. Les projets et programmes de développement devront poursuivre leur accompagnement aux exploitants des terres.
Faiblesses/ inconvénients/ risques: point de vue du compilateur ou d'une autre personne-ressource clécomment surmonter
  • Le traitement des ravines nécessite la mobilisation de moyens financiers et humains importants. Dans la mesure où ce sont des technologies qui sont mises en place à l'échelle des micro-bassins, il est nécessaire de poursuivre l'organisation et l'appui des exploitants agricoles.

Références

Compilateur
  • Moussa ABOU
Editors
  • Brice Sosthène BAYALA
  • Siagbé Golli
  • Tabitha Nekesa
  • Ahmadou Gaye
Examinateur
  • Sally Bunning
  • Rima Mekdaschi Studer
  • William Critchley
Date de mise en oeuvre: 3 avril 2023
Dernière mise à jour: 21 mai 2024
Personnes-ressources
Description complète dans la base de données WOCAT
Données de GDT correspondantes
La documentation a été facilitée par
Institution Projet
Références clés
  • Catalogue de fiches techniques des mesures d’amélioration de la fertilité des sols, Projet « Réhabilitation et protection des sols dégradés et renforcement des instances foncières locales dans les zones rurales du Burkina Faso » (ProSol), 2020: Disponible à ProSol Burkina
  • Catalogue des mesures CES/DRS promues par le ProSol, 2020: Disponible à ProSol-Burkina Faso
  • Diagnostic sur les sites d’extension de quatre (04) micros bassins versants au profit du ProSol, Projet « Réhabilitation et protection des sols dégradés et renforcement des instances foncières locales dans les zones rurales du Burkina Faso » (ProSol), 2020: Disponible à Prosol-Burkina Faso
  • Étude sur l’analyse coûts-bénéfices et économiques des mesures CES/DRS promues par ProSol, Projet « Réhabilitation et protection des sols dégradés et renforcement des instances foncières locales dans les zones rurales du Burkina Faso » (ProSol), 2020: Disponible à Prosol-Burkina Faso
  • Réalisation d’un diagnostic de l’état des ressources naturelles et de la gestion foncière dans les régions du Sud-Ouest et des Hauts-Bassins au Burkina Faso, Projet « Réhabilitation et protection des sols dégradés et renforcement des instances foncières locales dans les zones rurales du Burkina Faso » (ProSol), 2015: Disponible à ProSol-Burkina Faso
  • Guide de traitement des ravins à l’usage des acteurs communautaires dans la vallée de l’Agoundiss, Ali Blali, Expert Consultant en Aménagement des Bassins Versants et en Conservation des Sols, 2011: Disponible sur internet
  • Gestion Durable des Terres (GDT) sensible genre, Projet « Réhabilitation et protection des sols dégradés et renforcement des instances foncières locales dans les zones rurales du Burkina Faso » (ProSol), 2021: Disponible à ProSol-Burkina Faso
Liens vers des informations pertinentes disponibles en ligne
This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0 International