

Water harvest from the road (Highway) (Justus N.Mutinda, David K. Wam)

Water harvest (肯尼亚)

Kunasa maji ya muua yanuyobubugika na kuyuelekeza shambani kwa uzakshaji-Alex R.Adual RSCU/SIDA1996

Water harvest for agricultural production in Asals

Water harvest enhances extra moisture and reduces risk of crop failure. It can either be external or internal. The activities also reduce runoff/overland flow and soil loss. Manure and fertilizer improve soil water holding capacity and soil properties. Appropriate tillage for improvement of infiltration rate of the soil.

地点: KiMuiki, Kitise, Mburo, Kwa Kauisi, Eastern, 肯尼亚

分析的技术场所数量:

选定地点的地理参考 ● 37.95, -2.2

技术传播:

实施日期: 不到10年前 最□□

介绍类型

土地使用者的创新 一 工地使用有 作为传统系统的一□ 在实□/研究期□ □ I I I I I I I I I I I 分▶ 50 年』

Retention/nfiltration ditch (Justus N.Mutinda, David K. Wam)

Agroforestry establishment (mangoes plot) (Justus N.Mutinda, David K.Wamb)

技术分类

主要目的

生产

减少、』 、恢复土地』 化

保护生态系统

结合其他技术保护流域/下游区域

保持/提 生物多样性

减缓气候变化及其影响 创 有益的经济影响 有益的社会影响 创

土地利用

农田 - 一年一作

主』
农作物 Other: C.peas

混合 (作物/放牧/树木) ,包括农林 - 农林牧业

产儡务: Major cash crop CT: fruits Selective felling of (semi-) natural forests for fuelwood purpose Clear felling of (semi-)natural forests for agricultural production Forest also for fruits and nuts

供水

/

混合』水灌溉

充分灌溉

每年的生长季节数: 2

该技术实施前的土地利用: 不』

牲畜密度: 不』 用

土地退化相关的目的

✓ □ 止土地□ 减少土地□

修复/恢复严』 化的土地

0 应土地0 化 不同用

解决的退化问题

土壌水蚀 - Wt 』 土漁鉄

化学性土壤退化 - Cn1 和有机』 肥力下□ 含□

物理性土壤退化 - Pk 熟化和结壳il [

SLM组

」 水

SLM措施

农艺措施 -

植物措施 - V2🛚 和多年生』 本植物

结构措施 - S3 分级沟渠、渠□ 、水□

技术图纸

技术规范

作者』James K. Matonyi

technical drawing catchment to cultural area ratio: 3:1 - 5:1 Horizontal interval constant

Makueni district

Date: 22.11.2002

Technical knowledge required for field staff / advisors: moderate

Technical knowledge required for land users: high

Main technical functions: water harvesting / increase water supply

Secondary technical functions: increase / maintain water stored in soil, increase in soil fertility

Relay cropping

Material/ species: improved mango trees

Quantity/ density: 124 Remarks: 9 m^2 Manure / compost / residues Material/ species: FYM/compost Quantity/ density: 12.5 t/ha

Breaking compacted topsoil Remarks: appropriate tillage

Aligned: -contour

Vegetative material: G: grass

Vertical interval between rows / strips / blocks (m): 1.2 Spacing between rows / strips / blocks (m): 0.6x0.3 Vertical interval within rows / strips / blocks (m): 15 Width within rows / strips / blocks (m): 1.5

Scattered / dispersed

Vegetative material: T : trees / shrubs Number of plants per (ha): 40

In blocks

Vegetative material: T: trees / shrubs Number of plants per (ha): 124 Vertical interval between rows / strips / blocks (m): 9 Spacing between rows / strips / blocks (m): 9x9 Vertical interval within rows / strips / blocks (m): 9

Trees/ shrubs species: Cacia scamea, Accacia albida

Fruit trees / shrubs species: mango, citrus, pawpaw

Grass species: ceuchrus cuharis, erayroster superba

Slope (which determines the spacing indicated above): 8.00%

If the original slope has changed as a result of the Technology, the slope today is (see figure below): 0.00%

Gradient along the rows / strips: 0.20%

Retention/infiltration ditch/pit, sediment/sand trap Vertical interval between structures (m): 1.2 Depth of ditches/pits/dams (m): 0.6 Width of ditches/pits/dams (m): 1.2 Length of ditches/pits/dams (m): 100 Height of bunds/banks/others (m): 0.45 Width of bunds/banks/others (m): 1.5

Terrace: bench level

Vertical interval between structures (m): 1.2 Spacing between structures (m): 15 Depth of ditches/pits/dams (m): 0.6 Length of ditches/pits/dams (m): 100 Height of bunds/banks/others (m): 0.45

Construction material (earth): earth moving for SWC embankment construction

Slope (which determines the spacing indicated above): 8%

Lateral gradient along the structure: 0.2%

Vegetation is used for stabilisation of structures.

Change of land use type: stock holding capacity of land

技术建立与维护。 活动、投入和。 用

投入和成本的计算

- 』 算的成本为』
- 成本算使用的兼元
- 汇率 與算为美元 1 美元 = 不 用
- 『 用劳工的每日平均工』 成本92

技术建立活动

- 2. fruits seedling transplanting (时』/』 率ctober rain)
- 3. dispersed tree seedlings transplanting (时🛮 / 1 本ctober rain)

影响成本的最重要因素

Factors affecting the costs include hard ground at SWC peak period, labour, slope, catchment area, channel size and source of income

- 7. structure stabilization (时』/』 率nset of rain)

- 10. reseeding/grass planting in bare parches (时』/』 率ry season)
- 11. fodder establishment (时 / 摩ainy season)
- 12. removal of unwanted shrubs (时 / / / 摩ollowing rotational sequence)

技术建立的投入和成本

对投入进行具体说明	单位	数量	单位成本 (美元)	每项投入的总 成本 (美元)	土地使用者承 担的成本%
劳动力	·				
Labour	ha	1.0	296.0	296.0	100.0
设备					
Machine use	ha	1.0	32.5	32.5	100.0
Animal traction	ha	1.0	72.3	72.3	100.0
Tools	ha	1.0	385.0	385.0	100.0
植物材料					
Seeds	ha	1.0	76.3	76.3	100.0
Seedligs	ha	1.0	79.5	79.5	100.0
肥料和杀菌剂	·				
Fertilizer	ha	1.0	58.0	58.0	100.0
Biocides	ha	1.0	47.4	47.4	100.0
Compost/manure	ha	1.0	78.0	78.0	100.0
施工材料	•				
Stone	ha	1.0	244.0	244.0	100.0
技术建立所需总成本				1'369.0	

技术维护活动

- 藥efore rain / annually) 1. tillaging (时』/』
- 2. tillaging (时 / / / 率 n set / seasonally)
- 3. manure application (时 / 图 率 season / annually)
- 4. grass cutting and gapping (时 / / / 率nset of rain /twice per season)
- 5. prunning and trimming (时』/』 April After every harvest /annual)
- 6. pollading and copsing (时 / / / | 率when intended /after several years)
 7. retention/infiltration (时 / / / 率before onset of rain/seasonally)
- 8. ditch cleaning (时 / / / / | 本 efore onset of rain/anually)
- 9. Bench terraces repairing (时 / / /) 率efore onset of rain/when necessary)
- 10. Water channel cleaning/repairing (时』/』 率lry period/seasonally)
- 11. grass cutting for stall feedinf (时』/』 率ainy season / at maturity stage)
- 12. gapping (时』/』 癣ainy season / seasonally)

技术维护的投入和成本

对投入进行具体说明	单位	数量	单位成本 (美元)	每项投入的总 成本 (美元)	土地使用者承担的成本%			
劳动力								
Labour	ha	1.0	98.0	98.0	100.0			
设备								
Animal traction	ha	1.0	72.3	72.3	100.0			
植物材料								
Seeds	ha	1.0	67.3	67.3	100.0			
Seedlings	ha	1.0	55.7	55.7	100.0			
肥料和杀菌剂								
Fertilizer	ha	1.0	44.2	44.2	100.0			
Biocides	ha	1.0	21.5	21.5	100.0			
施工材料								
Earth	ha	1.0	244.0	244.0	100.0			
技术维护所需总成本				603.0				

年平均降雨量 农业气候带 关于气候的规范 < 250毫米 以毫米为单位 算的年平均 [350.0] 潮湿的 251-500毫米 半湿润 semi-arid: LGP-70-180 501-750毫米 半干旱 1 7 干旱 751-1,000毫米 arid: LGP-60-120 1,001-1,500毫米 1,501-2,000毫米 2,001-3,000毫米 3,001-4,000毫米 > 4,000毫米 斜坡 地形 海拔应用的技术 水平 0-2% 0-100 m a.s.l. 凸形情况 原原 **画**山。" 101-500 m a.s.l. 凹。情况 缓』 B-5% ▼缓□6-10%□ 不相关 山坡 501-1,000 m a.s.l. ▼ 滚坡』11-15%』 7,001-1,500 m a.s.l. 山地斜坡 - 崎岖 16-30% ✓ □ 坡 1,501-2,000 m a.s.l. ▼ □ 底 2,001-2,500 m a.s.l. 2,501-3,000 m a.s.l. 3,001-4,000 m a.s.l. > 4,000 m a.s.l. 土壤质地 (表土) 土壤深度 土壤质地 (地表以下>20厘米) 表土有机质含量 ✓ 粗粒/0 0 砂0 0✓ 中粒0 壤土、粉土0细粒/0 0 8 粘土0 □ 常浅0-20厘米□ □ □ ▶3%□ ✓ 浅 21-50厘米 中 1-3% ▼ 中等深度 51-80厘米 ▼ 低□ <1%□ 深 81-120厘米 『 常深▶120厘米』 盐度是个问题吗? 地下水位 地表水的可用性 水质 (未处理) 好 是 < 5米 处理 否 中等 仅供农业使用 灌溉 5-50米 > 50米 匮乏/没有 不可用 洪水发生 是 物种多样性 栖息地多样性 中等 中等 低 低 应用。 技术的土地使用者的特征 市场定位 非农收入 相对财富水平 机械化水平 低于全 收入的% 常。瘠 ✓ 手工作业 ✓ 收入的10-50% ✓ 畜力牵引 ▼ 平均水平 商业/市场 > 收入的50% 机械化/电动 丰富 常丰富 个人或集体 定栖或游牧 性别 年龄 个人/家庭 定栖的 女人 男人 儿童 年人中年人 团体/社区 半游牧的 游牧的 合作社 员工。 公司、政府 老年人 每户使用面积 规模 土地所有权 土地使用权 | 小 模的 < 0.5 公 州 ■ □ 由□ 入□ 无组织□ 社区 有组织 中等。模的 0.5-1 公日 公司 大。模的 1-2 公 社区/村庄 和日 ✓ 2-5公□ 团体 ✓ 个人 ✓ 个人□ 未命名✓ 个人□ 有命名

进入服务和基础设施的通道

社会经济影响

5-15公

15-50公日

50-100公日

100-500公日

500-1,000公日

1,000-10,000公日 > 10,000公日

作物生产

用水权

租□

个人

■ □ 由 □ 入□ 无组织□

社区 有组织

结』 和吸取的教』

长处: 土地使用者的观点

弱点/缺点/风险: 土地使用者的观点如何克服

• induces the technique of implementation

How can they be sustained / enhanced? land users be aquidance with the technology and its importance.

· land users acquires more grass for stall feeding.

How can they be sustained / enhanced? introduction of intensive

reduces floods of heavy storms downsteram.

How can they be sustained / enhanced? Proper tillage to curb soil crusting and hardban.

长处: 编制者或其他关键资源人员的观点

water harvest increases farm production and reduces risks of crop failure.

How can they be sustained / enhanced? To stabilize SWC structure embankments, desilt channels and retention ditches.

Improvement in infiltration rate and moisture holding capacity.

How can they be sustained / enhanced? Use of manure, organic matter, inorganic fertlizer and appropriate tillage.

• Reduces soil, fertility, runoff and overland flow losses

How can they be sustained / enhanced? Maximum adaptability of the SWC technology to ustain high production level.

• Enhanced vegetative cover for moisture retention.

How can they be sustained / enhanced? Intercropping, mulching and repairing where needed.

Reduces erosion by wind and other land degradation.

How can they be sustained / enhanced? Appropriate stocking rate andd replanting trees and grass.

- consumes a lot of time to implement the technology the land user awareness of the importance of the activity.
- Technology area resists a direct grazing to mitiate stall feeding
- the technology design is beyond the farmers knowledge. continuous interaction with SWC specialists.

弱点/缺点/风险: 编制者或其他关键资源人员的观点如何克服

- Land area reduced by SWC structures constructed. Use of certified seeds, manure and fertilizer.
- soil fertility is interfered with. more manure and organic matter
- High labour cost requirement to implement the technology. Introduced source of smooth loan and policy for ASALS.
- Risk of water logging where soil drainage is unaimable. acquired knowledge of different soil types and applicable technology and system.
- cost-benefit return can last long to be realized. to maintain record for both, implementing cost and income from the given area (SWC

参考文献

Editors 编制者 宙杳者 Kithinji Mutunga David Streiff

上次更新: March 27, 2017

实施日期: June 6, 2011

Peter Maithya Mutisya - SLM专业人员 Michael Ndengele - SLM专业人员 Lucas Makau Nguluu - SLM专业人员 Kithinji Mutunga (kithinji.mutunga@fao.org) - SLM专业人员 Francis Mbote (pc+changeme2@nalep.co.ke) - SLM专业人员 Alex R. Adunal - SLM专业人员

WOCAT数据库中的完整描述

https://qcat.wocat.net/zh/wocat/technologies/view/technologies_1097/

链接的SLM数据

用

文件编制者

机构

Ministry of Agriculture and Livestock Development of Kenya (MoA) - 肯尼亚

Ħ

不』用

主要参考文献

- SWC manual for Kenya by D:B: Thomas. 1997.: Mard Kenya, free
- SWC technology Dev. in ASAL by Kithinji Mutunga: SWC branch, free
- SC in Kenya, Carl G.Wenner. 1984.: Aici, free
- ony superb DXE-180 video: Mard Kenya, free
- The sun will still rise: Mard Kenya, free
- Run off a friend or a foe: Mard Kenya, free

This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0 International

