Multiple sequences of Cotton-Soybean, 6 rows of soybean bordered by a single row of cotton at either side (Rajni Sinha)

Supplemental Irrigation in a Legume-Cotton Production System (印度)

描述

Supplemental Irrigation (SI) offers a solution for irregular rainfall, as it provides a limited amount of water to essentially rainfed crops consequently ensuring good plant growth. Furthermore, SI provides the opportunity for a more diverse production system such as a legume-cotton system in which chickpeas are cultivated as a winter crop, and soybean and cotton are inter-cropped in the summer.

The state of Madhya Pradesh (India) has an average annual rainfall of around 1170 mm. However, data shows a declining trend. It is characterized by a monsoon period from July to September. Winter is from December to January and the summer is from February to March. The rainfall is irregular, resulting in crop failures, land degradation, nutrient leaching and shortened growing seasons. This constrains the agricultural sector, upon which 74% of the population is either directly or indirectly dependent. 38% of the agricultural area is intensively/conventionally irrigated. The majority of the water is obtained from groundwater which has led to over-exploitation.
To sustainably improve the agricultural sector, the International Center for Agricultural Research in the Dry Areas (ICARDA) introduced Supplemental Irrigation (SI). This is a practice in which essentially rainfed crops are cultivated rather than more water demanding crops. SI ensures a sufficient amount of water as rainfall satisfies the majority of the crop water demand. Water availability is not sought in (fossil) groundwater extraction, thus avoiding over-exploitation, but rather through rainwater harvesting (RWH), using the rainfall optimally. In addition, SI prolongs the growing season and enables more diverse farming systems by crop rotation and inter-cropping.
In 2018, a reservoir was constructed, with a 900,000 litres capacity. Every rainy season groundwater rises to the surface, indicating that the soil is fully saturated. The reservoir is filled by pumping the surface water from shallow wells. This is considered sustainable RWH as it assumed the pumped water is solely rainwater. An additional benefit of this approach is that no large catchment area is required. The building of the reservoir consists of 1) excavating the soil; 2) stone pitching the excavation; 3) installing polysheet to avoid water losses through infiltration. The water from the reservoir is distributed over the field by a portable (wheeled) sprinkler irrigation system. Hence, pumping from the reservoir is required.
The water from the reservoir allows for crop rotation with a winter crop, namely chickpeas. This crop grows from November till March, outside of the rainy season. Without SI, chickpea yield is poor as farmers must wait until sufficient rain has fallen before sowing, limiting the growing period. SI can provide the necessary water for the chickpeas to germinate well, ensuring a sufficient growing period. The chickpeas are manually harvested in March. Besides increased income for the farmer, chickpeas also provide valuable soil improvement as the plant fixes atmospheric nitrogen in the soil.
In additional to crop rotation, SI and water harvesting allows for a more intensive cropping system in which cotton and soybean are intercropped. These crops are planted in June-July. The intercrop ratio is two rows of cotton and six rows of soybean. Soybean and cotton are respectively threshed and harvested in October. Consequently, the plants are grown mainly in the rainy season. Fertilizer (80 kg nitrogen, 100 kg phosphorus and 60 kg potassium per hectare) is applied directly after sowing, hence June-July. In the same period the field is manually weeded. Micro-Nutrients (a mixture of B, Zn, Mn) are applied if needed. On average, this corresponds to one kilogram per hectare. Mechanical pesticide application is done from July to August by a sprayer, consisting of herbicides, fungicides and insecticides.
The frequency and amount of irrigated water through SI is unpredictable as it compensates rainfall irregularity. Nevertheless, it is advised to irrigate less than the infiltration rate of the soil, to avoid deep percolation of water and nutrient leaching. That is, it is better to irrigate small doses multiple times. For this reason, sandy soils are unsuitable as they have relatively high infiltration rates and low water holding capacity. On average, one hectare of this particular production system is irrigated through sprinklers thrice by 250 cubic meters of harvested water.

A great advantage of SI is that it leads to a year-round income through a diversified production system with an additional winter crop. Farmers also value SI ensuring stable yields, thus making them less vulnerable to rainfall irregularities. Also, the diversified system protects the crops better against epidemics. And as there are legumes included in the system, the soil quality is improved, lowering the required amount of nitrogen fertilizer.
Nevertheless, SI has some weaknesses. For example, the implementation of SI is difficult for smallholder farmers as they lack the area for a reservoir. In addition, the initial costs are high, so adoption may be restrained by the lack of available funds, especially for smallholder farmer. This specific SI, by water harvesting (extracting shallow groundwater) is not suitable in areas of poor groundwater recharge. But the concept of SI can be applied. To conclude, where it is technically and financially feasible, SI allows for more intensive, diversified and stable production system under climate change induced risks, hence supplemental irrigation is an important technique to improve the livelihoods of farmers exposed to climate change.

地点

地点: Madhya Pradesh, Central India, 印度

分析的技术场所数量: 单一场所

选定地点的地理参考
  • 78.61962, 22.97527

技术传播: 均匀地分布在一个区域 (approx. < 0.1 平方千米(10 公顷))

在永久保护区?:

实施日期: 2018

介绍类型
A picture showing the rows of soybean and cotton in a crop rotation system (Rajni Sinha)
A field of Chickpeas (Rajni Sinha)

技术分类

主要目的
  • 改良生产
  • 减少、预防、恢复土地退化
  • 保护生态系统
  • 结合其他技术保护流域/下游区域
  • 保持/提高生物多样性
  • 降低灾害风险
  • 适应气候变化/极端天气及其影响
  • 减缓气候变化及其影响
  • 创造有益的经济影响
  • 创造有益的社会影响
土地利用
同一土地单元内混合使用的土地: 否

  • 农田
    • 一年一作: 纤维作物 - 棉花, 豆科牧草和豆类 - 豌豆, 豆科牧草和豆类 - 大豆
    每年的生长季节数: 2
    采用间作制度了吗?: 是
    采用轮作制度了吗?: 是

供水
  • 雨养
  • 混合雨水灌溉
  • 充分灌溉

土地退化相关的目的
  • 防止土地退化
  • 减少土地退化
  • 修复/恢复严重退化的土地
  • 适应土地退化
  • 不适用
解决的退化问题
  • 土壤水蚀 - Wt:表土流失/地表侵蚀
  • 土壤风蚀 - Et:表土流失
  • 化学性土壤退化 - Cs:盐化/碱化
  • 物理性土壤退化 - Pw:水浸
  • 生物性退化 - Bc:植被覆盖的减少, Bq:数量/生物量减少
  • 水质恶化 - Ha:干旱化, Hs:地表水良变化, Hg:地下水/含水层水位的变化
SLM组
  • 轮作制度(轮作、休耕、轮垦)
  • 集水
  • 灌溉管理(包括供水、排水)
SLM措施
  • 农艺措施 - A1:植被和土壤覆盖层, A3:土壤表面处理 (A 3.1:免耕)
  • 植物措施 -
  • 结构措施 - S5:大坝、集水斗、水池, S7:集水/供水/灌溉设备
  • 管理措施 - M2:改变管理/强度级别

技术图纸

技术规范
The dimensions are :
-A: 46 meter
-B: 35 meter
-C: 29 meter
-D: 140 degrees
-E: 9 meter
-F: 3.8 meter
-G: 3.2 meter

The reservoir has a capacity of 9 000 cubic meter water. It is lined with 2847 square meter of polysheet to avoid water losses through infiltration.
The dimension related to the Winter-crop Chickpeas (in cm):
Spacing between rows (A) = 30
Spacing between plants within rows (B) = 15
Author: Joren Verbist
The dimensions related to the Soybean Cotton intercropping (in cm):
Spacing between soybean within row (A) = 15
Spacing between rows of soybean (B) = 30
Spacing between a row of cotton and a row of soybean (C) = 60
Spacing between cotton within a row (D) = 60
Spacing between cotton and cotton = 90
Author: Joren Verbist

技术建立与维护:活动、投入和费用

投入和成本的计算
  • 计算的成本为:每个技术区域 (尺寸和面积单位:6.4 hectares
  • 成本计算使用的货币:INR
  • 汇率(换算为美元):1 美元 = 73.52 INR
  • 雇用劳工的每日平均工资成本:37.5
影响成本的最重要因素
The most important factor that affects the cost is the establishment of the reservoir. However, this reservoir is able to irrigate 6.4 hectares.
技术建立活动
  1. Earth Work (时间/频率: Summer Season (May))
  2. Pitching (时间/频率: Summer Season (May))
  3. Polysheet Installation (时间/频率: Summer Season (May))
  4. Filling water (时间/频率: Rainy Season)
  5. Installing Irrigation System (时间/频率: At time of irrigation (as it is portable))
技术建立的投入和成本 (per 6.4 hectares)
对投入进行具体说明 单位 数量 单位成本 (INR) 每项投入的总成本 (INR) 土地使用者承担的成本%
劳动力
Pond Excavation m2 53.0 4000.0 212000.0 100.0
Sprinker Operation Person Hour 1.0 37.5 37.5 100.0
设备
Zero Tillage Seed Drill Machine 1.0 55000.0 55000.0 100.0
Sprinkler System (portable) System 1.0 28300.0 28300.0 100.0
施工材料
Micron-Geo-Membrane m2 2857.0 105.0 299985.0 100.0
其它
Tax (18%) Total 1.0 38160.0 38160.0 100.0
技术建立所需总成本 633'482.5
技术建立总成本,美元 8'616.46
技术维护活动
  1. Sowing Chickpeas (时间/频率: November)
  2. Sowing Cotton and Soybean (时间/频率: June-July)
  3. Weeding (时间/频率: July-August)
  4. Fertilizer Application (时间/频率: June-July)
  5. Micro-Nutrient Application (时间/频率: Upon Inspection (June))
  6. Irrigation (时间/频率: If needed (throughout growing season))
  7. Pesticide Application (时间/频率: July-August)
  8. Harvesting Chickpeas (时间/频率: March)
  9. Picking Cotton (时间/频率: October)
  10. Threshing Soybean (时间/频率: October)
技术维护的投入和成本 (per 6.4 hectares)
对投入进行具体说明 单位 数量 单位成本 (INR) 每项投入的总成本 (INR) 土地使用者承担的成本%
劳动力
Total Labour (inc sowing, fertilizer, irrigation, threshing, etc) Peron-Hours 640.0 37.5 24000.0 100.0
设备
Sowing (Zero-Tillage Seeder) Machine-Hours 57.0 500.0 28500.0 100.0
Threshing Soybean (Thresher) Machine-Hours 51.0 300.0 15300.0 100.0
Sprayer (weeding) Machine-Hours 51.0 300.0 15300.0 100.0
植物材料
Chickpeas Seeds Kilogram 448.0 450.0 201600.0 100.0
Cotton Seeds Kilogram 10.0 1400.0 14000.0 100.0
Soybean Seeds Kilogram 256.0 150.0 38400.0 100.0
肥料和杀菌剂
Micro-Nutrients (mixture of B, Zn, Mn) Kilogram 6.4 900.0 5760.0 100.0
Nitrogen (Urea) Kilogram 510.0 6.0 3060.0 100.0
Phosphorus (DAP) Kilogram 640.0 25.4 16256.0 100.0
Potassium (MOP) Kilogram 380.0 36.0 13680.0 100.0
Herbicide Liter 6.4 470.0 3008.0 100.0
Fungicide Liter 3.2 570.0 1824.0 100.0
Insecticide Liter 3.2 580.0 1856.0 100.0
其它
Cost Irrigation Total 6.4 250.0 1600.0 100.0
Irrigation Events Event 19.0 100.0
Water (depth) per irrigation event mm 300.0 100.0
技术维护所需总成本 384'144.0
技术维护总成本,美元 5'225.03

自然环境

年平均降雨量
  • < 250毫米
  • 251-500毫米
  • 501-750毫米
  • 751-1,000毫米
  • 1,001-1,500毫米
  • 1,501-2,000毫米
  • 2,001-3,000毫米
  • 3,001-4,000毫米
  • > 4,000毫米
农业气候带
  • 潮湿的
  • 半湿润
  • 半干旱
  • 干旱
关于气候的规范
The is a decreasing trend of annual rainfall but some parts have an increasing trend of monsoon rainfall.
斜坡
  • 水平(0-2%)
  • 缓降(3-5%)
  • 平缓(6-10%)
  • 滚坡(11-15%)
  • 崎岖(16-30%)
  • 陡峭(31-60%)
  • 非常陡峭(>60%)
地形
  • 高原/平原
  • 山脊
  • 山坡
  • 山地斜坡
  • 麓坡
  • 谷底
海拔
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
......应用的技术
  • 凸形情况
  • 凹陷情况
  • 不相关
土壤深度
  • 非常浅(0-20厘米)
  • 浅(21-50厘米)
  • 中等深度(51-80厘米)
  • 深(81-120厘米)
  • 非常深(> 120厘米)
土壤质地(表土)
  • 粗粒/轻(砂质)
  • 中粒(壤土、粉土)
  • 细粒/重质(粘土)
土壤质地(地表以下>20厘米)
  • 粗粒/轻(砂质)
  • 中粒(壤土、粉土)
  • 细粒/重质(粘土)
表土有机质含量
  • 高(>3%)
  • 中(1-3%)
  • 低(<1%)
地下水位
  • 表面上
  • < 5米
  • 5-50米
  • > 50米
地表水的可用性
  • 过量
  • 中等
  • 匮乏/没有
水质(未处理)
  • 良好饮用水
  • 不良饮用水(需要处理)
  • 仅供农业使用(灌溉)
  • 不可用
水质请参考: 地表水
盐度是个问题吗?

洪水发生
物种多样性
  • 中等
栖息地多样性
  • 中等

应用该技术的土地使用者的特征

市场定位
  • 生计(自给)
  • 混合(生计/商业)
  • 商业/市场
非农收入
  • 低于全部收入的10%
  • 收入的10-50%
  • > 收入的50%
相对财富水平
  • 非常贫瘠
  • 贫瘠
  • 平均水平
  • 丰富
  • 非常丰富
机械化水平
  • 手工作业
  • 畜力牵引
  • 机械化/电动
定栖或游牧
  • 定栖的
  • 半游牧的
  • 游牧的
个人或集体
  • 个人/家庭
  • 团体/社区
  • 合作社
  • 员工(公司、政府)
性别
  • 女人
  • 男人
年龄
  • 儿童
  • 青年人
  • 中年人
  • 老年人
每户使用面积
  • < 0.5 公顷
  • 0.5-1 公顷
  • 1-2 公顷
  • 2-5公顷
  • 5-15公顷
  • 15-50公顷
  • 50-100公顷
  • 100-500公顷
  • 500-1,000公顷
  • 1,000-10,000公顷
  • > 10,000公顷
规模
  • 小规模的
  • 中等规模的
  • 大规模的
土地所有权
  • 公司
  • 社区/村庄
  • 团体
  • 个人,未命名
  • 个人,有命名
土地使用权
  • 自由进入(无组织)
  • 社区(有组织)
  • 租赁
  • 个人
用水权
  • 自由进入(无组织)
  • 社区(有组织)
  • 租赁
  • 个人
进入服务和基础设施的通道
健康

贫瘠
教育

贫瘠
技术援助

贫瘠
就业(例如非农)

贫瘠
市场

贫瘠
能源

贫瘠
道路和交通

贫瘠
饮用水和卫生设施

贫瘠
金融服务

贫瘠

影响

社会经济影响
作物生产
降低
增加

作物质量
降低
增加

生产故障风险
增加
降低

产品多样性
降低
增加

灌溉用水的可用性
降低
增加

灌溉用水需求
增加
降低

农业投入费用
增加
降低

农业收入
降低
增加

收入来源的多样性
降低
增加

社会文化影响
食品安全/自给自足
减少
改良

生态影响
水量
降低
增加

水的回收/收集(径流、露水、雪等)
减少
改良

蒸发
增加
降低

土壤水分
降低
增加

土壤覆盖层
减少
改良

土壤流失
增加
降低

养分循环/补给
降低
增加

土壤有机物/地下C
降低
增加

植被覆盖层
降低
增加

生物量/地上C
降低
增加

害虫/疾病控制
降低
增加

干旱影响
增加
降低

场外影响

成本效益分析

与技术建立成本相比的效益
短期回报
非常消极
非常积极

长期回报
非常消极
非常积极

与技术维护成本相比的效益
短期回报
非常消极
非常积极

长期回报
非常消极
非常积极

气候变化

渐变气候
年温度 增加

非常不好
非常好
季雨量 减少

非常不好
非常好
季节: 旱季
气候有关的极端情况(灾害)
干旱

非常不好
非常好
流行病

非常不好
非常好

采用和适应

采用该技术的地区内土地使用者的百分比
  • 单例/实验
  • 1-10%
  • 11-50%
  • > 50%
在所有采用这种技术的人当中,有多少人在没有获得物质奖励的情况下采用了这种技术?
  • 0-10%
  • 11-50%
  • 51-90%
  • 91-100%
最近是否对该技术进行了修改以适应不断变化的条件?
什么样的变化条件?
  • 气候变化/极端气候
  • 不断变化的市场
  • 劳动力可用性(例如,由于迁移)

结论和吸取的教训

长处: 土地使用者的观点
  • Efficient utilization of available resources.
  • A profitable and sustainable system for rainfed areas.
  • Diversified system ensures round the year income.
长处: 编制者或其他关键资源人员的观点
  • Optimal use of rainwater, making it a sustainable practice.
  • Low risk of disaster or epidemic
弱点/缺点/风险: 土地使用者的观点如何克服
  • The implementation of the technology is difficult to implement for smallholder farmers. As they might lack a suitable area for the reservoir and/or the necessary funds. They establishment or improvement of water boards. This social capital can disseminate knowledge about SI. Also, it allows farmers to corporate more easily, e.g. paying for the construction of a reservoir jointly.
  • The high initial costs for the construction of a reservoir and sprinkler installation. By granting subsidy for the technology. Or farmer may purchase the technology jointly, lowering the effective price per farmer.
弱点/缺点/风险: 编制者或其他关键资源人员的观点如何克服
  • Problem in areas of poor groundwater recharge. → Water for the reservoir could be obtained by larger catchments instead of pumping up shallow ground water. However, there should be irrigated more frequently to ensure efficient water use.
  • The high initial costs for the construction of a reservoir and sprinkler installation. By granting subsidy for the technology or farmer may purchase the technology jointly, lowering the effective price per farmer.

参考文献

编制者
  • Joren Verbist
Editors
审查者
  • William Critchley
  • Rima Mekdaschi Studer
实施日期: Oct. 13, 2020
上次更新: May 1, 2021
资源人
WOCAT数据库中的完整描述
链接的SLM数据
文件编制者
机构 项目
链接到网络上可用的相关信息
  • Vinay Nangia, Theib Oweis, Francis Kemeze, Julian Schnetzer. (1/3/2018). Supplemental Irrigation: A promising Climate-Smart Practice for Dryland Agriculture. Beirut, Lebanon: International Center for Agricultural Research in the Dry Areas (ICARDA).: https://hdl.handle.net/20.500.11766/9003
  • Theib Oweis, Ahmed Hachum. (2/4/2012). Supplemental Irrigation: A Highly Efficient Water‐Use Practice. Beirut, Lebanon: International Center for Agricultural Research in the Dry Areas (ICARDA).: https://hdl.handle.net/20.500.11766/7524
  • Vinay Nangia. (10/11/2020). Water for Food, Water for Life: The Drylands Challenge.: https://hdl.handle.net/20.500.11766/12017
  • Kumar Shalander, B. Venkateswarlu, Khem Chand, Murari Mohan Roy. (20/11/2013). Farm level rainwater harvesting for dryland agriculture in India: Performance assessment and institutional and policy needs. Harbin, China: https://hdl.handle.net/20.500.11766/5259
This work is licensed under Creative Commons Attribution-NonCommercial-ShareaAlike 4.0 International