这是该案例的一个过时的非现行版本。 转到当前版本.
技术
闲置

Biogas system at household level fed daily with cattle manure [柬埔寨]

ប្រពន្ធ័ឡជីវៈឧស្ម័នប្រើសំរាប់គ្រួសារប្រចំាថៃ្ងដោយប្រើលាមកគោ (Khmer)

technologies_1645 - 柬埔寨

完整性: 86%

1. 一般信息

1.2 参与该技术评估和文件编制的资源人员和机构的联系方式

关键资源人

SLM专业人员:
SLM专业人员:

Khun Lean Hak

kleanghak@yahoo.com

SOFDEC/LAREC

1.3 关于使用通过WOCAT记录的数据的条件

(现场)数据是什么时候汇编的?:

05/08/2014

编制者和关键资源人员接受有关使用通过WOCAT记录数据的条件。:

1.4 所述技术的可持续性声明

这里所描述的技术在土地退化方面是否存在问题,导致无法被认为是一种可持续的土地管理技术?:

2. SLM技术的说明

2.1 技术简介

技术定义:

Small-scale biogas systems fed with cow manure and water are implemented in order to supply the household with energy for cooking and lighting, as well as to produce fertilizer.

2.2 技术的详细说明

说明:

In this case-study, a small-scale biogas system was introduced in order to generate both energy for home consumption and fertilizer. Small-scale biogas systems are implemented in different parts of the world, however the layout thereof varies considerably.
The model used in this case-study consists of different components (cf. technical drawing). First, there is an inlet where the land user puts cow manure mixed with water. On the bottom of the inlet, there is a board which closes the access to the bio-digester situated beneath the inlet. The board can be opened manually by pulling a string. Once the board is open, the fluid components go through a pipe which leads to the bio-digester. In the bio-digester, bacteria transform the organic matter into biogas (mainly methane and CO2) and slurry. At the other end of the digester, there is another pipe (outlet). The outlet is lower than the inlet, and due to the difference in pressure, the slurry is pushed out of the digester. The slurry is dried and applied to the fields two to three times a year with the help of an ox cart. It has similar effects on the plant growth as chemical fertilizer as it does not build up the soil organic matter as much as compost. The biogas, however, is pushed to the pipe situated on top of the digester and can be utilized for domestic uses. The gas is used for cooking and lighting.

The use of biogas allows reducing the expenses on charging batteries for the lighting, as well as reducing the firewood use (usually from deforestation) for cooking. The slurry reduces the expenses on chemical fertilizer in the fields and has the advantage of killing the weed and rice seeds present in the manure and crop residues.

For building the biogas system, there is governmental and NGO support. These two actors finance half of the construction costs. The other half is paid by the land user. Building a biogas system is quite costly, with about 400 $, and not all of the land users in the area can afford paying 50% of its price. However, the costs borne by the land user are paid off within a few years due to reduced expenses on firewood, chemical fertilizer, and charging batteries. The construction itself was undertaken by local companies.
The costs are paid off within a few years due to the reduced expenses on firewood, chemical fertilizer and battery charging.

The analysed area is flat (slope < 2%), tropic (dry and wet season), and the soils are mostly sandy or loamy. The soils contain little organic matter (low soil fertility, acidification, small amount of cattle, area has been deforested a long time ago) and the groundwater table is rather high (1-3 m during the dry season, on the surface during wet season).
Due to climate change, the rainfalls are more erratic, temperatures rise and droughts are more recurrent. Rice is the predominant crop grown in the area, since it serves as staple food (mix subsistence and commercial activities). Rice is often grown in monocultures and harvested once a year. Once the rice is harvested (dry season), the cattle are released to the paddy fields. The cattle is often replaced by hand tractors, which effects the production of manure but allows a higher amount of crop residues on the fields.
As an addition to rice, most land users grow vegetable and fruits in small home gardens (subsistence) and complement their income by producing handicrafts or through off farm income / remittances from family members working in other places. The increasing migration rate (the young generation leaves the villages to work in the cities, garment industry or abroad) results in a decrease of available labour force in the area which has detrimental effects on the agricultural activities. Furthermore, the civil war in the 1970s (Khmer Rouge) led to the loss of agricultural knowledge which different NGOs try to re-establish.

2.3 技术照片

2.5 已应用该技术的、本评估所涵盖的国家/地区/地点

国家:

柬埔寨

区域/州/省:

Kampong Chhnang

有关地点的进一步说明:

Sre Ouk Samlor Sap/Taing Krasaing/Rolear Pha,er

2.6 实施日期

如果不知道确切的年份,请说明大概的日期:
  • 不到10年前(最近)

2.7 技术介绍

详细说明该技术是如何引入的:
  • 通过项目/外部干预
注释(项目类型等):

LWS (a Dutch NGO) in joint efforts with specialists from the National Biodigester Program NBP. Implementation in 2012

3. SLM技术的分类

3.1 该技术的主要目的

  • 改良生产
  • 创造有益的经济影响

3.2 应用该技术的当前土地利用类型

农田

农田

  • 一年一作
定居点、基础设施

定居点、基础设施

  • 定居点、建筑物
  • 能源:管道、电线
注释:

Major land use problems (compiler’s opinion): Lack of organic matter, lack of water retention in soil, irregularity of rainfall, low soil fertility (sandy soil), monocultures, bare soil during dry season, ploughing.
Major land use problems (land users’ perception): Low soil fertility, lack of water.
Livestock is grazing on crop residues
Constraints of settlement / urban
Constraints of infrastructure network (roads, railways, pipe lines, power lines)

3.3 有关土地利用的更多信息

每年的生长季节数:
  • 1
具体说明:

Longest growing period in days: 210, Longest growing period from month to month: June-December

3.4 该技术所属的SLM组

  • 节能技术

3.5 技术传播

具体说明该技术的分布:
  • 均匀地分布在一个区域
如果该技术均匀地分布在一个区域上,请注明覆盖的大致区域。:
  • 0.1-1 平方千米
注释:

There are only 4 households in this village which apply the technology (lack of money and/or cattle). However, similar Technologies are introduced in other provinces – yet it is difficult to estimate the area covered. Estimation for this village.

3.6 包含该技术的可持续土地管理措施

结构措施

结构措施

  • S11:其它
管理措施

管理措施

  • M6:废物管理(回收、再利用或减少)
注释:

Main measures: management measures
Secondary measures: structural measures

3.7 该技术强调的主要土地退化类型

化学性土壤退化

化学性土壤退化

  • Cn:肥力下降和有机质含量下降(非侵蚀所致)
  • Ca:酸化
生物性退化

生物性退化

  • Bs:质量和物种组成/多样性的下降
注释:

Main causes of degradation: soil management (Ploughing, soil is left bare for several weeks), crop management (annual, perennial, tree/shrub) (Rice monoculture (rice as staple crop)), change of seasonal rainfall (More erratic beginning of wet season), droughts (On dry soil, rice cannot be planted and if already planted, rice cannot grow), labour availability (High migration rates from the villages to garment industry, cities or abroad, influence agricultural activities (e.g. broadcasting instead of transplanting of rice seedlings)), education, access to knowledge and support services (Khmer Rouge regime in the 1970s, a lot of knowledge got lost)
Secondary causes of degradation: over-exploitation of vegetation for domestic use (Rice straw is removed for different domestic uses (cattle, mushroom cultivation, etc.)), overgrazing (Cattle eats rice straw left after harvest, less organic matter on the field, grazing is not managed), change in temperature (More hot days), Heavy / extreme rainfall (intensity/amounts), land tenure (Some incidents of land grabbing, land use rights not clear, corruption), poverty / wealth

3.8 防止、减少或恢复土地退化

具体数量名该技术与土地退化有关的目标:
  • 防止土地退化
  • 减少土地退化

4. 技术规范、实施活动、投入和成本

4.1 该技术的技术图纸

作者:

National Biodigester Programm, www.nbp.org.kh

4.2 技术规范/技术图纸说明

Biodigester. Inlet: top left; gas outlet: top centre; digestion chambre: centre; and outlet: right. For the comlete building instructions contact the NBP.
Technical knowledge required for field staff / advisors: high (The most challenging part is the construction of the construction of the Biodigester.)
Technical knowledge required for land users: low
Main technical functions: increase in nutrient availability (supply, recycling,…)
Secondary technical functions: increase in organic matter

Structural measure: Biodigester. Round shape. Tiles and concrete.
Width of ditches/pits/dams (m): 4 m^3
Structural measure: Connecting pipes made of plastic
Construction material (concrete): Tiles are covered in concrete.
Construction material (other): The most challenging part is the construction of the Biodigester.
Other type of management: Change of energy supply system for home consumption.

4.3 有关投入和成本计算的一般信息

其它/国家货币(具体说明):

Riel

注明美元与当地货币的汇率(如相关):1美元=:

4000.0

注明雇用劳工的每日平均工资成本:

5.00

4.4 技术建立活动

活动 措施类型 时间
1. Construction of the biodigester by external experts. The land user did not help with the construction, he only paid 200 US$. The other 200 US$ were paid by the National Biodigester Program. 结构性的 Dry season, when water table is low.

4.5 技术建立所需要的费用和投入

对投入进行具体说明 单位 数量 单位成本 每项投入的总成本 土地使用者承担的成本%
施工材料 Construction of biodigester 1.0 400.0 400.0 50.0
技术建立所需总成本 400.0

4.6 维护/经常性活动

活动 措施类型 时间/频率
1. Add manure and water to the inlet 管理 once per day all year round
2. Collect residuals from biodigester, spread it out and let it dry, and finally put it on the field. 管理 3 times/year

4.7 维护/经常性活动所需要的费用和投入(每年)

对投入进行具体说明 单位 数量 单位成本 每项投入的总成本 土地使用者承担的成本%
劳动力 Labour 1.0 121.5 121.5 100.0
技术维护所需总成本 121.5
注释:

Machinery/ tools: Cart to bring residues from the biodigester onto the fields.

The costs were calculated for 1 biodigester with a capacity of 4 m3.

4.8 影响成本的最重要因素

描述影响成本的最决定性因素:

The most costly part of this Technology is the construction of the biodigester. Once the system is installed, the costs borne by the land user are low. Also, the land user can save money since he doesn’t need to buy firewood any more.

5. 自然和人文环境

5.1 气候

年降雨量
  • < 250毫米
  • 251-500毫米
  • 501-750毫米
  • 751-1,000毫米
  • 1,001-1,500毫米
  • 1,501-2,000毫米
  • 2,001-3,000毫米
  • 3,001-4,000毫米
  • > 4,000毫米
有关降雨的规范/注释:

1486.45 mm 2013 in Kampong Chhnang

农业气候带
  • 半湿润

27° to 35°C, 1486.45 mm 2013 in Kampong Chhnang

5.2 地形

平均坡度:
  • 水平(0-2%)
  • 缓降(3-5%)
  • 平缓(6-10%)
  • 滚坡(11-15%)
  • 崎岖(16-30%)
  • 陡峭(31-60%)
  • 非常陡峭(>60%)
地形:
  • 高原/平原
  • 山脊
  • 山坡
  • 山地斜坡
  • 麓坡
  • 谷底
垂直分布带:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.

5.3 土壤

平均土层深度:
  • 非常浅(0-20厘米)
  • 浅(21-50厘米)
  • 中等深度(51-80厘米)
  • 深(81-120厘米)
  • 非常深(> 120厘米)
土壤质地(表土):
  • 粗粒/轻(砂质)
  • 中粒(壤土、粉土)
表土有机质:
  • 中(1-3%)
  • 低(<1%)

5.4 水资源可用性和质量

地下水位表:

< 5米

地表水的可用性:

匮乏/没有

水质(未处理):

不良饮用水(需要处理)

关于水质和水量的注释和进一步规范:

Ground water tabel and availability of surface water data during dry seasons. People use water for drinking after filtering or boiling.

5.5 生物多样性

物种多样性:
关于生物多样性的注释和进一步规范:

Only degraded forests are in the area.

5.6 应用该技术的土地使用者的特征

定栖或游牧:
  • 半游牧的
生产系统的市场定位:
  • 混合(生计/商业
非农收入:
  • 收入的10-50%
相对财富水平:
  • 丰富
个人或集体:
  • 个人/家庭
性别:
  • 女人
  • 男人
说明土地使用者的其他有关特征:

Land users applying the Technology are mainly Leaders / privileged
Population density: 10-50 persons/km2
Annual population growth: 0.5% - 1%
Off-farm income specification: Handicraft, remittances and factory work.

5.7 应用该技术的土地使用者拥有或租用的平均土地面积

  • < 0.5 公顷
  • 0.5-1 公顷
  • 1-2 公顷
  • 2-5公顷
  • 5-15公顷
  • 15-50公顷
  • 50-100公顷
  • 100-500公顷
  • 500-1,000公顷
  • 1,000-10,000公顷
  • > 10,000公顷
这被认为是小规模、中规模还是大规模的(参照当地实际情况)?:
  • 中等规模的

5.8 土地所有权、土地使用权和水使用权

土地所有权:
  • 社区/村庄
  • 个人,未命名
土地使用权:
  • 社区(有组织)
  • 个人
用水权:
  • 自由进入(无组织)
注释:

Land ownership is very complex. Most of the land belongs officially to the government, yet many land users hold a paper confirming they applied for a land title – but de iure, this paper is worthless.

5.9 进入服务和基础设施的通道

健康:
  • 贫瘠
  • 适度的
教育:
  • 贫瘠
  • 适度的
技术援助:
  • 贫瘠
  • 适度的
就业(例如非农):
  • 贫瘠
  • 适度的
市场:
  • 贫瘠
  • 适度的
能源:
  • 贫瘠
  • 适度的
道路和交通:
  • 贫瘠
  • 适度的
饮用水和卫生设施:
  • 贫瘠
  • 适度的
金融服务:
  • 贫瘠
  • 适度的

6. 影响和结论性说明

6.1 该技术的现场影响

社会经济效应

生产

作物生产

降低
增加
注释/具体说明:

Dried residues are put in the garden (cucumber, pumpkin, watermelon) which increases nutrient availability.

能源生产

降低
增加
收入和成本

农业投入费用

增加
降低
注释/具体说明:

He saves 50 $ on chemical fertilizer per year.

社会文化影响

健康状况

恶化
改良
注释/具体说明:

No smoke from open fire.

Contribution to human well-being

decreased
increased
注释/具体说明:

On the long term livelihood is improved, because he saves over 60 $ per year in firewood and battery charging for light, as well as 50 $ for chemical fertilizer.

生态影响

水循环/径流

水质

降低
增加
注释/具体说明:

Pollution of groundwater due to washing out of nutrients.

土壤

土壤有机物/地下C

降低
增加
注释/具体说明:

Most of the carbon is transformed into methane, not available as organic matter.

其它生态影响

weed seeds

increased
reduced
注释/具体说明:

Compost usually not completely decomposed, as well as raw manure, contain lots of weed seeds.

energy generation (eg hydro, bio)

decreased
increased
注释/具体说明:

Before the installation of the biogas system, the land user bought firewood.

deforestation for firewood

increased
decreased

6.2 该技术的场外影响已经显现

地下水/河流污染

增加
减少
注释/具体说明:

Sludge is left to dry outside, nutrients washed out into groundwater. Not measurable.

6.3 技术对渐变气候以及与气候相关的极端情况/灾害的暴露和敏感性(土地使用者认为的极端情况/灾害)

渐变气候

渐变气候
季节 气候变化/极端天气的类型 该技术是如何应对的?
年温度 增加

气候有关的极端情况(灾害)

气象灾害
该技术是如何应对的?
局地暴雨
局地风暴
气候灾害
该技术是如何应对的?
干旱
水文灾害
该技术是如何应对的?
比较和缓的(河道)洪水 不好

其他气候相关的后果

其他气候相关的后果
该技术是如何应对的?
缩短生长期

6.4 成本效益分析

技术收益与技术建立成本相比如何(从土地使用者的角度看)?
短期回报:

消极

长期回报:

非常积极

技术收益与技术维护成本/经常性成本相比如何(从土地使用者的角度看)?
短期回报:

非常积极

长期回报:

非常积极

6.5 技术采用

  • 大于 50%
如若可行,进行量化(住户数量和/或覆盖面积):

100% or 4 land user families

注释:

100% of land user families have adopted the Technology with external material support
4 land user families have adopted the Technology with external material support
The farmers can ask the National Biodigester Program for subsidies, but need to pay half of it on their own. As the farmers often lack money and need at least 3 - 4 heads of cattle to produce enough manure while they switch more and more to hand tractors, not many farmers are building new biogas digesters.

6.7 该技术的优点/长处/机会

土地使用者眼中的长处/优势/机会
Fertilizer production (sludge).
Saves money and time on the cooking fuel (previously wood) and electricity (charging batteries) for the light.
No weed seeds in the sludge compared to compost and raw manure if used as fertilizer.
编制者或其他关键资源人员认为的长处/优势/机会
Less deforestation for firewood.

6.8 技术的弱点/缺点/风险及其克服方法

土地使用者认为的弱点/缺点/风险 如何克服它们?
The residue does not improve the soil as much as compost. Make compost in addition to biogas to enhance the soil organic matter.
The building costs are prohibitive Increase subsidies from state or NGOs.
At least 3-4 heads of cattle or 4-5 pigs have to be kept to produce enough manure. Diversify production with different animals.
Work has to be done each day to produce biogas.
编制者或其他关键资源人员认为的弱点/缺点/风险 如何克服它们?
Overgrazing could become a problem as more cattle needs to be kept. Add slurry as a liquid fertilizer
Part of nitrogen is volatilized during the drying of the sludge.

7. 参考和链接

7.1 信息的方法/来源

  • 实地考察、实地调查
  • 与土地使用者的访谈

7.2 参考可用出版物

标题、作者、年份、ISBN:

NBP National Biodigester Program

可以从哪里获得?成本如何?

www.nbp.org.kh

标题、作者、年份、ISBN:

Lam et al. 2009. Domestic Biogas Compact Course. University of Oldenburg.

可以从哪里获得?成本如何?

http://www.nbp.org.kh/publication/study_report/2_domestic_biogas%20.pdf

标题、作者、年份、ISBN:

Gurung. 2009. Review of Literature on Effects of Slurry Use on Crop production. The Biogas Support Program

模块