A Water-Energy-Food (WEF) efficient net house [阿拉伯联合酋长国]
- 创建:
- 更新:
- 编制者: Joren Verbist
- 编辑者: –
- 审查者: William Critchley, Rima Mekdaschi Studer
technologies_7303 - 阿拉伯联合酋长国
查看章节
全部展开 全部收起1. 一般信息
1.2 参与该技术评估和文件编制的资源人员和机构的联系方式
关键资源人
Activities Coordinator Officer:
Nejatian Arash
阿拉伯联合酋长国
Regional Coordinator APRP:
Aziz Niane Abdoul
International Center of Agriculture Research in the Dry Areas (ICARDA)
阿拉伯联合酋长国
Research Team Leader - Soils, Waters and Agronomy:
Nangia Vinay
International Center of Agriculture Research in the Dry Areas (ICARDA)
摩洛哥
有助于对技术进行记录/评估的项目名称(如相关)
ICARDA Institutional Knowledge Management Initiative有助于对技术进行记录/评估的机构名称(如相关)
International Center for Agricultural Research in the Dry Areas (ICARDA) - 黎巴嫩1.3 关于使用通过WOCAT记录的数据的条件
编制者和关键资源人员接受有关使用通过WOCAT记录数据的条件。:
是
1.4 所述技术的可持续性声明
这里所描述的技术在土地退化方面是否存在问题,导致无法被认为是一种可持续的土地管理技术?:
否
2. SLM技术的说明
2.1 技术简介
技术定义:
The technology integrates off-grid soil-less cultivation within a net house, utilizing solar-powered root zone cooling and ultra-low energy irrigation, thus significantly enhancing water and energy efficiency for sustainable agriculture in arid regions. This innovation is a key contribution within the Water-Energy-Food Nexus, addressing the unique challenges of food production in the Middle East.
2.2 技术的详细说明
说明:
Achieving food production and food security in the Middle East is challenging due to the region's arid climate. Net houses and greenhouses offer potential solutions by improving water efficiency and providing better climate control. However, traditional greenhouses require substantial water and energy inputs. This challenge is directly linked to the Water-Energy-Food (WEF) Nexus, which offers integrated solutions to these interconnected needs.
In 2022, the International Center for Agricultural Research in the Dry Areas (ICARDA) began experimenting with various greenhouse models in the United Arab Emirates (UAE) to develop an optimal WEF solution. The outcome of these experiments is a water- and energy-efficient “net house” with several advantages.
One major issue with conventional greenhouses is their high water use due to the inefficiency of traditional soil bed systems. ICARDA’s research highlighted that simplified closed soil-less production systems can reduce irrigation water needs by more than 50%. These systems also offer additional benefits, including shorter cropping cycles, no risk of soil degradation or contamination, higher resource efficiency, and lower operational costs, as they eliminate the need for sterilization, soil cultivation, base fertilizers, and weed control.
Traditional greenhouses typically use pads and fans for cooling, but these systems have significant drawbacks. They are costly, require frequent maintenance and replacements, and consume a large amount of electricity. It's also noteworthy that most Gulf countries have recently increased their electricity prices. One approach to reducing cooling needs is to use a net house instead of a traditional greenhouse, combined with ventilators.
Another factor contributing to high energy consumption in traditional greenhouses is the use of conventional drip irrigation systems. In collaboration with the Massachusetts Institute of Technology (MIT), ICARDA researched energy-efficient drip irrigation systems, leading to the development of Ultra Low Energy (ULE) drippers. These drippers reduce pumping energy by 80%, which in turn lowers the number of solar panels required, making the system more cost-effective.
The efficient WEF Nexus solution proposed by ICARDA comprises five key technologies:
1.Closed soil-less production system: A hydroponic system with fertigation.
2.Net house: A structure that allows airflow while protecting crops from insects and adverse weather.
3.Ultra-low pressure irrigation system
4.Root zone cooling: In soil-less systems, cooling the root zone is easier and more cost-effective through ventilation.
5.Low-cost solar energy: The rapid decline in the cost of solar panels enhances the system's affordability.
This case study focuses on irrigation and fertigation solar powered solution with a Hybrid AC/DC root zone cooling. It is hybrid, which implies that there are no batteries to keep the house running at night and when sunshine is insufficient, it takes electricity from the grid. Compared to conventional cooled greenhouses, the net house measuring 8x30 meters offer multiple benefits compared with traditional greenhouses:
•Energy savings of 80% to 90%
•Extended production periods without any reduction in yield or quality
•Significantly lower costs
•Dramatically improved water productivity
•A 14% increase in net returns and a 28% reduction in costs.
This innovation demonstrates the effectiveness and necessity of integrated Water-Energy-Food strategies and contributes to a more water, energy, and food-secure Middle East.
2.3 技术照片
2.4 技术视频
注释、简短说明:
https://hdl.handle.net/20.500.11766/69293
日期:
2023
摄影师的名字:
ICARDA
2.5 已应用该技术的、本评估所涵盖的国家/地区/地点
国家:
阿拉伯联合酋长国
具体说明该技术的分布:
- 适用于特定场所/集中在较小区域
技术现场是否位于永久保护区?:
否
2.6 实施日期
如果不知道确切的年份,请说明大概的日期:
- 不到10年前(最近)
2.7 技术介绍
详细说明该技术是如何引入的:
- 通过土地使用者的创新
- 在实验/研究期间
- 通过项目/外部干预
注释(项目类型等):
Greenhouse and net houses were already present.
3. SLM技术的分类
3.1 该技术的主要目的
- 改良生产
- 适应气候变化/极端天气及其影响
- 减缓气候变化及其影响
- 创造有益的经济影响
3.2 应用该技术的当前土地利用类型
同一土地单元内混合使用的土地::
否

农田
- 一年一作
年作 - 具体指明作物:
- 蔬菜 - 叶菜(色拉、卷心菜、菠菜和其他)
每年的生长季节数:
- 3
采用间作制度了吗?:
否
采用轮作制度了吗?:
否
3.3 由于技术的实施,土地使用是否发生了变化?
由于技术的实施,土地使用是否发生了变化?:
- 否(继续问题3.4)
3.4 供水
该技术所应用土地的供水:
- 充分灌溉
注释:
Hydroponic system
3.5 该技术所属的SLM组
- 土壤肥力综合管理
- 灌溉管理(包括供水、排水)
- 节能技术
3.6 包含该技术的可持续土地管理措施

农艺措施
- A7:其它

结构措施
- S7:集水/供水/灌溉设备
- S10:节能措施

管理措施
- M2:改变管理/强度级别
注释:
A7: Soil-less cultivation
3.7 该技术强调的主要土地退化类型

土壤水蚀
- Wt:表土流失/地表侵蚀

土壤风蚀
- Et:表土流失

化学性土壤退化
- Cn:肥力下降和有机质含量下降(非侵蚀所致)
- Cp:土壤污染
- Cs:盐化/碱化

生物性退化
- Bl:土壤寿命损失

水质恶化
- Ha:干旱化
- Hg:地下水/含水层水位的变化
注释:
The net house protects soils and crops from wind and water erosion. By soil-less cultivation and rootzone cooling, less water is required hence it indirectly addresses the decline in water resources.
3.8 防止、减少或恢复土地退化
具体数量名该技术与土地退化有关的目标:
- 防止土地退化
- 适应土地退化
注释:
The net house is an adaptive measure to LD however, by its higher energy- and water efficiency it indirectly prevents further degradation.
4. 技术规范、实施活动、投入和成本
4.1 该技术的技术图纸
技术规范(与技术图纸相关):
This diagram illustrates a "24 Volt Hybrid System" for a solar-powered hydroponic production setup. It features a greenhouse (8x30 meters) where plants are grown in a semi-controlled environment. The system is powered primarily by six 300W solar panels, providing 85% of the total energy needed, while the grid supplements with an additional 25%. Key components include a 24V root zone cooling system and an automatic fertigation controller, which manages nutrient delivery to the plants. This hybrid setup highlights sustainable energy use and efficient plant care in hydroponic agriculture.
作者:
Arash Nejatian & Abdoul Aziz Niane
日期:
2022
技术规范(与技术图纸相关):
Schematic overview. This diagram shows a solar irrigation setup and wiring chart for a closed hydroponics system, designed for a net house of 8x30 meters with a recommended irrigation rate of 5 liters per minute and four irrigation lines. The setup is powered by a 310-330W monocrystalline solar panel connected to a 30-amp FOXSUR solar charge controller (12V/24V). The system includes two 12V, 20AH UPS/solar batteries, a 16A DC miniature circuit breaker, and a 24VAC modular contactor. An irrigation controller manages the water output at 24VAC, operating a 450W DC pump with a 1.5-inch outlet, ensuring efficient water delivery for hydroponic plant growth.ronics
作者:
Arash Nejatian & Abdoul Aziz Niane
日期:
2023
4.2 有关投入和成本计算的一般信息
具体说明成本和投入是如何计算的:
- 每个技术单元
指定单位:
Net house
指定单位面积(如相关):
8 by 30 meter
其它/国家货币(具体说明):
Dirham
如相关,注明美元与当地货币的汇率(例如1美元=79.9巴西雷亚尔):1美元=:
3.67
4.4 技术建立所需要的费用和投入
对投入进行具体说明 | 单位 | 数量 | 单位成本 | 每项投入的总成本 | 土地使用者承担的成本% | |
---|---|---|---|---|---|---|
其它 | Net house structure | total | 1.0 | 25000.0 | 25000.0 | |
其它 | Irrigation system | total | 1.0 | 2015.0 | 2015.0 | |
其它 | Root Zone Cooling | total | 1.0 | 5000.0 | 5000.0 | |
其它 | Hydroponic system | total | 1.0 | 3000.0 | 3000.0 | |
技术建立所需总成本 | 35015.0 | |||||
技术建立总成本,美元 | 9540.87 |
如果土地使用者负担的费用少于100%,请注明由谁负担其余费用:
The project
注释:
Cost show total cost for that specific components hence it includes aspects such as materials and installation (i.e., labour).
The hybrid AC/DC system, which uses electricity from the grid when sunlight is insufficient and shuts down at night, eliminates the need for batteries. Off-grid systems, by contrast, require at least four batteries, each priced at a minimum of $200. Additionally, the off-grid setup requires five extra solar panels, costing $150 each. As a result, the hybrid system reduces investment costs by $1,550.
4.5 维护/经常性活动
活动 | 时间/频率 | |
---|---|---|
1. | Planting cucumber | September |
2. | Harvesting cucumber | May |
注释:
Because of the root zone cooling the cucumber can grow for a longer period. Without root zone cooling the harvest is in April.
4.6 维护/经常性活动所需要的费用和投入(每年)
对投入进行具体说明 | 单位 | 数量 | 单位成本 | 每项投入的总成本 | 土地使用者承担的成本% | |
---|---|---|---|---|---|---|
劳动力 | Labour | Person-Days | 2.0 | 800.0 | 1600.0 | |
植物材料 | Cucumber seeds | seeds | 800.0 | 0.3 | 240.0 | |
肥料和杀菌剂 | NPK (12-12-36 + TE) | 20 kg bag | 2.0 | 200.0 | 400.0 | |
肥料和杀菌剂 | Magnesium sulfate | 20 kg bag | 1.0 | 60.0 | 60.0 | |
肥料和杀菌剂 | Calcium Nitrate | 20 kg bag | 2.0 | 200.0 | 400.0 | |
肥料和杀菌剂 | Pesticides | Liter | 1.0 | 106.0 | 106.0 | |
其它 | Water | cubic meter | 40.0 | 3.13 | 125.2 | |
其它 | Energy (electricity) | kWh | 1344.0 | 0.045 | 60.48 | |
技术维护所需总成本 | 2991.68 | |||||
技术维护总成本,美元 | 815.17 |
如果土地使用者负担的费用少于100%,请注明由谁负担其余费用:
The project
4.7 影响成本的最重要因素
描述影响成本的最决定性因素:
The most important costs factor making this innovation more cost effective than the conventionally cooled greenhouses is energy cost and water cost. For the conventionally cooled greenhouses these costs are respectively 302 and 680.
5. 自然和人文环境
5.1 气候
年降雨量
- < 250毫米
- 251-500毫米
- 501-750毫米
- 751-1,000毫米
- 1,001-1,500毫米
- 1,501-2,000毫米
- 2,001-3,000毫米
- 3,001-4,000毫米
- > 4,000毫米
农业气候带
- 干旱
5.2 地形
平均坡度:
- 水平(0-2%)
- 缓降(3-5%)
- 平缓(6-10%)
- 滚坡(11-15%)
- 崎岖(16-30%)
- 陡峭(31-60%)
- 非常陡峭(>60%)
地形:
- 高原/平原
- 山脊
- 山坡
- 山地斜坡
- 麓坡
- 谷底
垂直分布带:
- 0-100 m a.s.l.
- 101-500 m a.s.l.
- 501-1,000 m a.s.l.
- 1,001-1,500 m a.s.l.
- 1,501-2,000 m a.s.l.
- 2,001-2,500 m a.s.l.
- 2,501-3,000 m a.s.l.
- 3,001-4,000 m a.s.l.
- > 4,000 m a.s.l.
说明该技术是否专门应用于:
- 不相关
关于地形的注释和进一步规范:
SLM is soil less.
5.3 土壤
平均土层深度:
- 非常浅(0-20厘米)
- 浅(21-50厘米)
- 中等深度(51-80厘米)
- 深(81-120厘米)
- 非常深(> 120厘米)
土壤质地(表土):
- 中粒(壤土、粉土)
土壤质地(地表以下> 20厘米):
- 中粒(壤土、粉土)
表土有机质:
- 低(<1%)
5.4 水资源可用性和质量
地下水位表:
> 50米
地表水的可用性:
中等
水质(未处理):
仅供农业使用(灌溉)
水质请参考::
地下水
水的盐度有问题吗?:
是
该区域正在发生洪水吗?:
否
5.5 生物多样性
物种多样性:
- 低
栖息地多样性:
- 低
5.6 应用该技术的土地使用者的特征
定栖或游牧:
- 定栖的
生产系统的市场定位:
- 混合(生计/商业)
- 商业/市场
非农收入:
- 低于全部收入的10%
相对财富水平:
- 非常贫瘠
个人或集体:
- 个人/家庭
- 团体/社区
机械化水平:
- 手工作业
- 机械化/电动
性别:
- 男人
土地使用者的年龄:
- 青年人
- 中年人
- 老年人
5.7 应用该技术的土地使用者使用的平均土地面积
- < 0.5 公顷
- 0.5-1 公顷
- 1-2 公顷
- 2-5公顷
- 5-15公顷
- 15-50公顷
- 50-100公顷
- 100-500公顷
- 500-1,000公顷
- 1,000-10,000公顷
- > 10,000公顷
这被认为是小规模、中规模还是大规模的(参照当地实际情况)?:
- 中等规模的
5.8 土地所有权、土地使用权和水使用权
土地所有权:
- 个人,未命名
- 个人,有命名
土地使用权:
- 个人
用水权:
- 个人
土地使用权是否基于传统的法律制度?:
是
5.9 进入服务和基础设施的通道
健康:
- 贫瘠
- 适度的
- 好
教育:
- 贫瘠
- 适度的
- 好
技术援助:
- 贫瘠
- 适度的
- 好
就业(例如非农):
- 贫瘠
- 适度的
- 好
市场:
- 贫瘠
- 适度的
- 好
能源:
- 贫瘠
- 适度的
- 好
道路和交通:
- 贫瘠
- 适度的
- 好
饮用水和卫生设施:
- 贫瘠
- 适度的
- 好
金融服务:
- 贫瘠
- 适度的
- 好
6. 影响和结论性说明
6.1 该技术的现场影响
社会经济效应
生产
作物生产
作物质量
能源生产
水资源可用性和质量
灌溉用水的可用性
注释/具体说明:
Indirectly, it improved water availability through higher water use efficiency
灌溉用水需求
收入和成本
农业投入费用
农业收入
生态影响
水循环/径流
蒸发
对现场影响的评估(测量)进行具体说明:
Assessments are based on expert judgement and available reports
6.2 该技术的场外影响已经显现
水资源可用性
温室气体的影响
6.3 技术对渐变气候以及与气候相关的极端情况/灾害的暴露和敏感性(土地使用者认为的极端情况/灾害)
渐变气候
渐变气候
季节 | 增加或减少 | 该技术是如何应对的? | |
---|---|---|---|
年温度 | 增加 | 非常好 | |
季节性温度 | 旱季 | 增加 | 非常好 |
年降雨量 | 减少 | 适度 |
6.4 成本效益分析
技术收益与技术建立成本相比如何(从土地使用者的角度看)?
短期回报:
轻度消极
长期回报:
非常积极
技术收益与技术维护成本/经常性成本相比如何(从土地使用者的角度看)?
短期回报:
非常积极
长期回报:
非常积极
6.5 技术采用
- 1-10%
在所有采用这项技术的人当中,有多少人是自发的,即未获得任何物质奖励/付款?:
- 0-10%
6.6 适应
最近是否对该技术进行了修改以适应不断变化的条件?:
否
6.7 该技术的优点/长处/机会
土地使用者眼中的长处/优势/机会 |
---|
Higher water use efficiency |
Higher energy efficiency and better use of solar energy |
Shortened cropping season without quantity or quality penalties |
More cost effective |
Increased net farm income |
Non-reliant on fluctuating and increasing energy prices |
6.8 技术的弱点/缺点/风险及其克服方法
土地使用者认为的弱点/缺点/风险 | 如何克服它们? |
---|---|
High investment costs | The fully off-grid system is significantly more expensive. In contrast, the hybrid system—without batteries, shutting down at night, and drawing electricity from the grid when needed—has substantially lower investment costs due to requiring fewer solar panels and no batteries. |
High technical skills required | The hydroponic system and improved electrical system require additional expertise. This challenge can be addressed by building capacity and providing education to extension services. |
7. 参考和链接
7.1 信息的方法/来源
- 与SLM专业人员/专家的访谈
- 根据报告和其他现有文档进行编译
(现场)数据是什么时候汇编的?:
2024
7.3 链接到网络上的相关信息
标题/说明:
Arash Nejatian, Muthir Al Rawahy, Abdoul Aziz Niane, Amal Hassan Al Ahmadi, Vinay Nangia, Boubaker Dhehibi. (11/7/2024). Renewable Energy and Net House Integration for Sustainable Cucumber Crop Production in the Arabian Peninsula: Extending Growing Seasons and Reducing Resource Use. Journal of Sustainability Reseach, 6 (3).
URL:
https://hdl.handle.net/20.500.11766/69396
标题/说明:
Arash Nejatian (Producer, Director), Abdoul Aziz Niane, Vinay Nangia. (30/6/2023). Solar Powered Net House.
URL:
https://hdl.handle.net/20.500.11766/69293
标题/说明:
Arash Nejatian, Abdoul Aziz Niane, Vinay Nangia, Amal Hassan Al Ahmadi, Tahra Naqbi, Haliema Ibrahim, Mohamed Ahmed Hamdan Al Dhanhani. (16/6/2023). Enhancing Controlled Environment Agriculture in Desert Ecosystems with AC/DC Hybrid Solar Technology. International Journal of Energy Production and Management, 8 (2), pp. 107-114.
URL:
https://hdl.handle.net/20.500.11766/68508
标题/说明:
Arash Nejatian, Abdoul Aziz Niane. (31/5/2023). Net House Powered by Solar Energy.
URL:
https://hdl.handle.net/20.500.11766/69304
标题/说明:
Arash Nejatian, Abdoul Aziz Niane. (29/10/2022). Solar Energy Powered Net-House with Root Zone Cooling Hydroponic System. Beirut, Lebanon: International Center for Agricultural Research in the Dry Areas (ICARDA).
URL:
https://hdl.handle.net/20.500.11766/67736
链接和模块
全部展开 全部收起链接
无链接
模块
无模块