技术

Peatland Rewetting [荷兰]

Peatland Rewetting

technologies_7140 - 荷兰

完整性: 88%

1. 一般信息

1.2 参与该技术评估和文件编制的资源人员和机构的联系方式

关键资源人

SLM专业人员:

Powell William

JIN Climate & Sustainability

荷兰

有助于对技术进行记录/评估的项目名称(如相关)
Land Use Based Mitigation for Resilient Climate Pathways (LANDMARC)
有助于对技术进行记录/评估的机构名称(如相关)
JIN Climate and Sustainability (JIN) - 荷兰

1.3 关于使用通过WOCAT记录的数据的条件

编制者和关键资源人员接受有关使用通过WOCAT记录数据的条件。:

1.4 所述技术的可持续性声明

这里所描述的技术在土地退化方面是否存在问题,导致无法被认为是一种可持续的土地管理技术?:

2. SLM技术的说明

2.1 技术简介

技术定义:

Peatland rewetting is a climate change mitigation technology that involves raising and maintaining high water tables in agricultural peatland through controlled drainage. It reduces soil subsidence and CO2 emissions while preserving biodiversity. This technology offers environmental benefits but faces challenges in policy support and economic viability.

2.2 技术的详细说明

说明:

Peatland rewetting is increasingly being applied in the Netherlands, particularly in the province of Zuid Holland, as a critical environmental management strategy. This technology is implemented in agricultural fields on peatland soil, representing an important shift in land management practices. The method can be characterised by raising and maintaining a high water table in peatland areas through the implementation and careful control of a sophisticated drainage system.
The system's technical infrastructure includes an integrated network of pipes, pumps (including innovative solar-powered options), and strategically placed ditches to control the water level. Advanced monitoring equipment is installed to track water table levels with precision, ensuring optimal management of the wetland conditions. The primary purpose of peatland rewetting is to mitigate climate change by reducing soil subsidence and consequent CO2 emissions from drained peatlands, which globally contribute around 2 Gt of CO2 annually.
Implementation requires several key components and activities. The initial phase involves comprehensive site assessment and installation of the drainage system, including careful placement of monitoring equipment and, where applicable, solar panels for sustainable pump operation. Ongoing maintenance activities are crucial and involve regular system monitoring, component repairs, and water level adjustments to maintain optimal conditions between -10 and +20 cm, as demonstrated in projects like the Swinkels case study.
The benefits and impacts of peatland rewetting are multifaceted. Primary environmental benefits include significant reduction in CO2 emissions by preventing peat oxidation, preservation of valuable peatland habitats and biodiversity, and improved regional water management. The practice also helps avoid substantial costs associated with soil subsidence, such as infrastructure repairs and dam reinforcement that would otherwise be necessary in degraded peatland areas.
From the land user's (farmer's) perspective, the transition to peatland rewetting presents both opportunities and challenges. The main benefits include access to potential subsidies, avoided costs due to soil subsidence, and the opportunity to participate in innovative agricultural practices like paludiculture - the cultivation of wet-tolerant crops such as cattail, which can be used for various applications including fodder. However, farmers may face challenges including significant initial investment costs, the necessity to adapt to new farming techniques and business models, and potential yield impacts during the transition period as they navigate the learning curve of wet agriculture.
Some environmental considerations require careful management. While peatland rewetting generally provides positive environmental outcomes, there can be challenges with nutrient leaching affecting water quality, which necessitates careful monitoring and management strategies. Additionally, stakeholders express concerns about the lack of consistent long-term subsidies and policy support for maintaining these practices, highlighting the need for more robust institutional frameworks to support sustainable peatland management.
Scientific monitoring of these sites, as demonstrated in the LANDMARC project, includes sophisticated tools such as soil sampling for physical and chemical analysis, molecular microbial identification, greenhouse gas measurements, and the use of satellite data and field mapping to track progress and impact. This comprehensive monitoring approach helps ensure the effectiveness of rewetting initiatives and provides valuable data for scaling up these solutions to national and continental levels.

2.3 技术照片

2.5 已应用该技术的、本评估所涵盖的国家/地区/地点

国家:

荷兰

区域/州/省:

South Holland

有关地点的进一步说明:

Alblasserwaard-Vijfheerenlanden

具体说明该技术的分布:
  • 适用于特定场所/集中在较小区域
技术现场是否位于永久保护区?:

注释:

There is no indication that the sites have a special protected status. The sites are active agricultural lands used for dairy farming. The peatland rewetting sites are on working farms, two organic dairy farms and one conventional dairy farm. The land is described as a permanent grassland. They are actively managed agricultural areas rather than protected natural reserves.

2.6 实施日期

注明实施年份:

2022

2.7 技术介绍

  • regional collaboration
注释(项目类型等):

Key partners of peatland rewetting in this region include farmers, research institutes, local water authorities, and nature organizations

3. SLM技术的分类

3.1 该技术的主要目的

  • 减少、预防、恢复土地退化
  • 保护生态系统
  • 保持/提高生物多样性
  • 适应气候变化/极端天气及其影响
  • 减缓气候变化及其影响

3.2 应用该技术的当前土地利用类型

同一土地单元内混合使用的土地::


牧场

牧场

动物类型:
  • 牛 - 奶制品
是否实行作物与牲畜的综合管理?:

如果是,请具体说明:

The technology aims to combine peatland conservation and dairy farming. It involves both land and livestock.

产品和服务:
  • 奶类
  • grass/fodder production, carbon sequestration, water management.
品种:

牛 - 奶制品

水道、水体、湿地

水道、水体、湿地

3.3 由于技术的实施,土地使用是否发生了变化?

由于技术的实施,土地使用是否发生了变化?:
  • 否(继续问题3.4)

3.4 供水

该技术所应用土地的供水:
  • 混合雨水灌溉
注释:

There will be pressurized draining systems installed, suggesting water management beyond reliance on rainfall.

3.5 该技术所属的SLM组

  • 引水和排水
  • 湿地保护/管理

3.6 包含该技术的可持续土地管理措施

结构措施

结构措施

  • S3:分级沟渠、渠道、水道
注释:

Drainage systems are a significant structural intervention to the landscape. The hydrology of the area is modified through engineered solutions. This technology allows for control of groundwater levels independently from ditch water levels.

3.7 该技术强调的主要土地退化类型

化学性土壤退化

化学性土壤退化

  • Cn:肥力下降和有机质含量下降(非侵蚀所致)
物理性土壤退化

物理性土壤退化

  • Ps:有机土壤沉降,土壤沉降
生物性退化

生物性退化

  • Bc:植被覆盖的减少
  • Bh:栖息地丧失
  • Bq:数量/生物量减少
  • Bs:质量和物种组成/多样性的下降
  • Bl:土壤寿命损失
水质恶化

水质恶化

  • Hs:地表水良变化
  • Hg:地下水/含水层水位的变化
  • Hp:地表水水质下降
  • Hw:湿地缓冲能力下降
注释:

The most significant issues being addressed by peatland rewetting is Ps: subsidence of organic soils, setting of soil.

3.8 防止、减少或恢复土地退化

具体数量名该技术与土地退化有关的目标:
  • 防止土地退化
  • 减少土地退化
注释:

The primary goal of peatland rewetting is to reduce land degradation. By implementing pressurized drainage systems, the technology seeks to slow down the rate of peat decomposition and subsequent soil subsidence.

4. 技术规范、实施活动、投入和成本

4.1 该技术的技术图纸

技术规范(与技术图纸相关):

Schematic representation of the pressurized drainage system and monitoring setup for a peatland rewetting plot. The system includes drainage pipes at 4m intervals, a central collection pipe, control wells, and various monitoring equipment for measuring soil moisture, groundwater levels, ditch water levels, and water flows. Solar-powered pumps control water levels independently of ditch water levels. Monitoring also includes soil temperatures, biodiversity assessments, and continuous measurement of soil surface height changes.

作者:

Gé van den Eertwegh

日期:

2020

4.2 有关投入和成本计算的一般信息

具体说明成本和投入是如何计算的:
  • 每个技术区域
注明尺寸和面积单位:

8.4 ha

其它/国家货币(具体说明):

EUR

注明雇用劳工的每日平均工资成本:

60 EUR per hour is the estimated average cost of labour in the Netherlands

4.3 技术建立活动

活动 时间(季度)
1. selection of test plots Winter/Spring
2. creating drainage plans Winter/Spring
3. obtaining permits Winter/Spring
4. installing drainage systems Summer
5. installing monitoring equipment Summer
6. damming ditches Late Summer/Early Fall
7. installing pumps Summer
8. setting up reference plots for comparison Full Year
9. conducting baseline measurements Full Year
注释:

No clear data available on specific timing, however estimations are made based on the technical requirements and the climate of the Netherlands.

4.4 技术建立所需要的费用和投入

对投入进行具体说明 单位 数量 单位成本 每项投入的总成本 土地使用者承担的成本%
劳动力 installation
劳动力 maintenance
设备 drainage and collection pipes
设备 pumps and solar panels
设备 control wells
设备 monitoring equipment (soil moisture sensors, etc.)
如果您无法分解上表中的成本,请估算建立该技术所需要的总成本。:

579000.0

如果土地使用者负担的费用少于100%,请注明由谁负担其余费用:

There is local and national government involvement in sharing the costs. Farmers also contribute 25% of the installation costs and provide in-kind contributions through their time.

注释:

The total cost of establishment and ongoing costs for the whole area of 8.4 hectares are estimated to be EUR 570000 including VAT. The breakdown is:
a. Monitoring/ analysis 44%
b. Education 2%
c. Communication 7%
d. Reporting 8%
e. Management 11%
f. Materials/ apparatus 16%
g. Drainage system including ditches 9%

4.5 维护/经常性活动

活动 时间/频率
1. ongoing monitoring of soil moisture, groundwater levels, and soil movement
2. Management of water levels using the pumping system
3. Maintenance of drainage pipes and pumps
4. Data collection and analysis
5. Ecological monitoring (biodiversity, wading birds)
6. Grass yield measurements
7. Soil temperature monitoring
8. Water quality testing
9. Reporting and communication activities
注释:

See comment under 4.4

4.6 维护/经常性活动所需要的费用和投入(每年)

对投入进行具体说明 单位 数量 单位成本 每项投入的总成本 土地使用者承担的成本%
劳动力 Systems operation and monitoring
劳动力 Maintenance and potential replacement of equipment
劳动力 Data analysis and reporting costs
劳动力 ecological survey costs
其它 Energy costs for pumps (some are solar)
注释:

See comment under 4.4 and note that Euros 579000 (including VAT) is an estimate of both establishment AND ongoing costs

4.7 影响成本的最重要因素

描述影响成本的最决定性因素:

The most important factors affecting the costs are the installation of the drainage systems, monitoring equipment and activities, scale of implementation, types of drainage pipes, solar-powered pumping systems, project management and research activities, adaptation of surrounding water management, duration of the project, labor costs, and location-specific factors (such as the soil profile of the area of implementation).

5. 自然和人文环境

5.1 气候

年降雨量
  • < 250毫米
  • 251-500毫米
  • 501-750毫米
  • 751-1,000毫米
  • 1,001-1,500毫米
  • 1,501-2,000毫米
  • 2,001-3,000毫米
  • 3,001-4,000毫米
  • > 4,000毫米
指定年平均降雨量(若已知),单位为mm:

790.00

注明所考虑的参考气象站名称:

statista

农业气候带
  • 半湿润

5.2 地形

平均坡度:
  • 水平(0-2%)
  • 缓降(3-5%)
  • 平缓(6-10%)
  • 滚坡(11-15%)
  • 崎岖(16-30%)
  • 陡峭(31-60%)
  • 非常陡峭(>60%)
地形:
  • 高原/平原
  • 山脊
  • 山坡
  • 山地斜坡
  • 麓坡
  • 谷底
垂直分布带:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
说明该技术是否专门应用于:
  • 不相关
关于地形的注释和进一步规范:

The Netherlands is flat, although the technology is applied to an area with a 1 to 3 ditches.

5.3 土壤

平均土层深度:
  • 非常浅(0-20厘米)
  • 浅(21-50厘米)
  • 中等深度(51-80厘米)
  • 深(81-120厘米)
  • 非常深(> 120厘米)
土壤质地(表土):
  • 细粒/重质(粘土)
土壤质地(地表以下> 20厘米):
  • 中粒(壤土、粉土)
表土有机质:
  • 高(>3%)

5.4 水资源可用性和质量

地下水位表:

< 5米

地表水的可用性:

该区域正在发生洪水吗?:

规律性:

偶然

5.5 生物多样性

物种多样性:
  • 中等
栖息地多样性:
  • 中等
关于生物多样性的注释和进一步规范:

Although these areas support some important biodiversity values, their primary current use is agricultural.

5.6 应用该技术的土地使用者的特征

定栖或游牧:
  • 定栖的
生产系统的市场定位:
  • 商业/市场
相对财富水平:
  • 平均水平
个人或集体:
  • 个人/家庭
机械化水平:
  • 机械化/电动
土地使用者的年龄:
  • 中年人
说明土地使用者的其他有关特征:

I do not have specific information available on off-farm income or the gender of the land-users, although it is well-known that 60% of Dutch farm land is family-owned.

5.7 应用该技术的土地使用者使用的平均土地面积

  • < 0.5 公顷
  • 0.5-1 公顷
  • 1-2 公顷
  • 2-5公顷
  • 5-15公顷
  • 15-50公顷
  • 50-100公顷
  • 100-500公顷
  • 500-1,000公顷
  • 1,000-10,000公顷
  • > 10,000公顷
这被认为是小规模、中规模还是大规模的(参照当地实际情况)?:
  • 小规模的
注释:

likely to be considered small-scale

5.8 土地所有权、土地使用权和水使用权

土地所有权:
  • 个人,有命名
土地使用权:
  • 个人
用水权:
  • 社区(有组织)

5.9 进入服务和基础设施的通道

健康:
  • 贫瘠
  • 适度的
教育:
  • 贫瘠
  • 适度的
技术援助:
  • 贫瘠
  • 适度的
就业(例如非农):
  • 贫瘠
  • 适度的
市场:
  • 贫瘠
  • 适度的
能源:
  • 贫瘠
  • 适度的
道路和交通:
  • 贫瘠
  • 适度的
饮用水和卫生设施:
  • 贫瘠
  • 适度的
金融服务:
  • 贫瘠
  • 适度的

6. 影响和结论性说明

6.1 该技术的现场影响

社会经济效应

生产

饲料生产

降低
增加
注释/具体说明:

Peatland rewetting aims to maintain or slightly improve grass yields

水资源可用性和质量

饮用水的质量

降低
增加

灌溉用水的可用性

降低
增加

生态影响

生物多样性:植被、动物

栖息地多样性

降低
增加
注释/具体说明:

Aims to improve biodiversity, especially for wading birds and aquatic life

减少气候和灾害风险

干旱影响

增加
降低
注释/具体说明:

helps manage drought and heavy rainfall situations

碳和温室气体的排放

增加
降低
注释/具体说明:

Reduces greenhouse gas emissions

其它生态影响

Potential improvement in water quality of ditches and surrounding water bodies

对现场影响的评估(测量)进行具体说明:

The implementation of peatland rewetting through raised water levels and submerged drains has shown significant reduction in greenhouse gas emissions, with measurements indicating a decrease from 19-50 t CO2 per hectare annually to approximately half those levels. While this water management approach impacts dairy farming viability, the use of innovative drainage systems has demonstrated that agricultural production can be maintained. Monitoring data shows reduced soil subsidence rates, from an average of 8 mm/year to lower rates, while also indicating potential improvements in habitat conditions for meadow birds and wetland biodiversity.

6.2 该技术的场外影响已经显现

水资源可用性

降低
增加
注释/具体说明:

Rewetting improves regional hydrology by keeping water longer in the landscape, enhancing water retention capacity.

旱季稳定可靠的水流

减少
增加
注释/具体说明:

Water retention in rewetted peatlands helps maintain more stable water flows during dry periods.

下游洪水

增加
减少
注释/具体说明:

Restored peatlands act as natural water buffers, reducing peak flows and downstream flooding risks.

地下水/河流污染

增加
减少
注释/具体说明:

Rewetting reduces nutrient runoff (particularly nitrate) into groundwater and surface waters, improving water quality.

缓冲/过滤能力

减少
改良
注释/具体说明:

Restored wetland conditions enhance the natural filtering capacity of peatlands, improving water quality in the wider landscape.

对公共/私人基础设施的破坏

增加
减少
注释/具体说明:

Rewetting helps reduce soil subsidence which otherwise damages roads, buildings and other infrastructure.

温室气体的影响

增加
减少
注释/具体说明:

Measurements show significant reduction in greenhouse gas emissions, from 19-50 t CO2 per hectare annually to approximately half those levels through water management.

对场外影响(测量)的评估进行具体说明:

The project includes monitoring of water quality and ecology in surrounding ditches. Greenhouse gas emissions are expected to greatly decrease.

6.3 技术对渐变气候以及与气候相关的极端情况/灾害的暴露和敏感性(土地使用者认为的极端情况/灾害)

渐变气候

渐变气候
季节 增加或减少 该技术是如何应对的?
年温度 增加 未知
季节性温度 夏季 增加 未知
年降雨量 减少 未知
注释:

The prediction is more for extreme weather patterns than a decrease of rainfall overall. The technology's effectiveness may be challenged by these changes, as maintaining optimal water levels becomes more difficult as rainfall decreases. Therefore there may be an impact on this technology during extended dry periods.

6.4 成本效益分析

技术收益与技术建立成本相比如何(从土地使用者的角度看)?
短期回报:

消极

长期回报:

积极

技术收益与技术维护成本/经常性成本相比如何(从土地使用者的角度看)?
短期回报:

消极

长期回报:

积极

注释:

The short-term returns on peatland rewetting are negative due to their (sometimes significantly) high establishment costs. The establishment costs, however, are the highest cost associated with this technology and the long-term returns and benefits are what make the high upfront costs attractive for land-users.

6.5 技术采用

  • 单例/实验
在所有采用这项技术的人当中,有多少人是自发的,即未获得任何物质奖励/付款?:
  • 0-10%
注释:

In this case, it was a collaborative effort

6.6 适应

最近是否对该技术进行了修改以适应不断变化的条件?:

6.7 该技术的优点/长处/机会

土地使用者眼中的长处/优势/机会
Provides better control over water levels, helping to manage both drought and excess water situations
Potential to maintain or improve grass yields while addressing environmental concerns
Opportunity to contribute to reducing greenhouse gas emissions and soil subsidence
编制者或其他关键资源人员认为的长处/优势/机会
Offers a solution to reduce peat soil subsidence and associated greenhouse gas emissions
Improves water management and quality in the area, potentially benefiting biodiversity.
Provides a model for sustainable dairy farming on peatlands, balancing economic and environmental needs.

6.8 技术的弱点/缺点/风险及其克服方法

土地使用者认为的弱点/缺点/风险 如何克服它们?
High initial investment costs Provide more substantial subsidies or financial support for implementation
Uncertainty about long-term economic benefits Conduct longer-term studies to demonstrate economic viability; develop compensation schemes for ecosystem services
Requires changes in farming practices Provide training and support for adapting to new management techniques
编制者或其他关键资源人员认为的弱点/缺点/风险 如何克服它们?
Inconsistent policy support across different water boards Develop a united, long-term policy framework for peatland management
Potential for increased nutrient leaching Implement additional measures to mitigate nutrient runoff; continue monitoring water quality
Limited data on long-term effectiveness Continue monitoring and research to build a comprehensive understanding of long-term impacts

7. 参考和链接

7.1 信息的方法/来源

  • 与土地使用者的访谈
  • 与SLM专业人员/专家的访谈
  • 根据报告和其他现有文档进行编译
注释:

The interviews and data collection done for these cases of peatland rewetting in the Netherlands were completed as a part of the EU-funded LANDMARC project, which went from 2020 to 2024. Most of the data collection used to fill in this questionnaire was completed in 2022 and accessed again in 2024. For specific information on this case study, the publications from LANDMARC can be referenced here: https://www.landmarc2020.eu/

7.2 参考可用出版物

标题、作者、年份、ISBN:

Scientific assessment and policy analysis: peatlands and carbon flows: outlook and importance for the netherlands,A. Verhagen J.J.H. van den Akker C. Blok W.H. Diemont J.H.J. Joosten M.A. Schouten R.A.M. Schrijver R.M. den Uyl P.A. Verweij J.H.M Wösten, 2009, WAB 500102 027

可以从哪里获得?成本如何?

Available for free from the WAB (Dutch Scientific Assessment and Policy Analysis on Climate Change)

模块