Labour de conservation à petite échelle [Kenya]
- Creation:
- Update:
- Compiler: Frederick I. Kihara
- Editor: –
- Reviewers: Deborah Niggli, Rima Mekdaschi Studer, Alexandra Gavilano
ConTill (English); Kupiga Tindo (Swahili)
technologies_940 - Kenya
- Full summary as PDF
- Full summary as PDF for print
- Full summary in the browser
- Full summary (unformatted)
- Labour de conservation à petite échelle: Junie 3, 2019 (public)
- Labour de conservation à petite échelle: April 4, 2018 (inactive)
- Labour de conservation à petite échelle: April 4, 2018 (inactive)
- Labour de conservation à petite échelle: Aug. 11, 2017 (inactive)
- Labour de conservation à petite échelle: Julie 11, 2017 (inactive)
- Labour de conservation à petite échelle: Des. 22, 2016 (inactive)
View sections
Expand all Collapse all1. General information
1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology
SLM specialist:
Kiteme Boniface
CETRAD
Kenya
Name of project which facilitated the documentation/ evaluation of the Technology (if relevant)
Book project: where the land is greener - Case Studies and Analysis of Soil and Water Conservation Initiatives Worldwide (where the land is greener)Name of project which facilitated the documentation/ evaluation of the Technology (if relevant)
Book project: SLM in Practice - Guidelines and Best Practices for Sub-Saharan Africa (SLM in Practice)1.3 Conditions regarding the use of data documented through WOCAT
The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:
Ja
1.4 Declaration on sustainability of the described Technology
Is the Technology described here problematic with regard to land degradation, so that it cannot be declared a sustainable land management technology?
Nee
1.5 Reference to Questionnaire(s) on SLM Approaches (documented using WOCAT)
2. Description of the SLM Technology
2.1 Short description of the Technology
Definition of the Technology:
Déchaumage du sol en utilisant de charrues tirées par des boeufs avec le but d'améliorer le stockage d'eau dans le sol et la productivité
2.2 Detailed description of the Technology
Description:
Le labour de conservation à petite échelle implique l’utilisation de charrues tirées par des bœuf, modifiées pour le déchaumage. L’adaptation de l’age d’une charrue ordinaire permet d’ajuster la hauteur de l’outil à différentes hauteurs pour en faire un ripper. Le déchaumage est effectué en un passage à 10 cm de profondeur. Le sous-solage profond est effectué avec le même outil, lorsqu’il faut briser une semelle de labour, jusqu’à 30 cm de profondeur Le sous-solage favorise l’infiltration de l’eau et diminue le ruissellement. Contrairement au labour traditionnel, le sol n’est pas retourné ; les résidus de culture restent ainsi en surface, exposant moins le sol à l’érosion « splash » et en nappe et aux pertes d’eau par évaporation et ruissellement.
Dans les champs sous-solés, l’eau des pluies d’orages du début de la saison de culture est stockée dans la zone racinaire et est ainsi disponible à la culture pendant périodes sèches. Le sous-solage en saison sèche, combiné avec un paillage en couverture, diminue la germination des adventices, laissant les champs prêts au semis. En cas d’adventices résistances, un désherbant est utilisé en pré-semis. Les rendements du labour de conservation à petite échelle peuvent augmenter de 60% par rapport au labour traditionnel, en plus d’économies d’énergie de travail.
Avec cette technologie, les cultures arrivent plus tôt à maturité parce qu’elles peuvent être semées plus tôt (pour un labour qui retourne la terre, celle-ci doit d’abord être humidifiée). Une meilleure précocité des cultures signifie un accès plus précoce aux marchés et des prix plus élevés. Plusieurs technologies peuvent faciliter le sous-solage : (1) Apports de compost / fumier pour améliorer la structure du sol et la rétention d’eau, (2) engrais vert (par ex. Mucuna pruriens) planté à la fin de la saison pour éviter l’érosion, contrôler les adventices et améliorer la structure et (3) L’agroforesterie (surtout Grevillea robusta planté dans les champs ou lelong des limeites).
2.3 Photos of the Technology
2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment
Country:
Kenya
Region/ State/ Province:
Umande
Further specification of location:
Laikipia
Comments:
4 km2. Jugement d'expert et discussion de groupe (Mwireri, Kieni, Kalalu villages in Umande sub-district)
Map
×2.6 Date of implementation
If precise year is not known, indicate approximate date:
- less than 10 years ago (recently)
2.7 Introduction of the Technology
Specify how the Technology was introduced:
- through projects/ external interventions
3. Classification of the SLM Technology
3.1 Main purpose(s) of the Technology
- improve production
- reduce, prevent, restore land degradation
3.2 Current land use type(s) where the Technology is applied
Land use mixed within the same land unit:
Nee
Cropland
- Annual cropping
Annual cropping - Specify crops:
- cereals - maize
- legumes and pulses - beans
- root/tuber crops - potatoes
Number of growing seasons per year:
- 2
Forest/ woodlands
Type of tree:
- Grevillea robusta
Comments:
Problèmes:
- perte d'eau par ruissellement et evaporation de l'eau de surface
- érosion hydrique par ruissellement
- baisse de fertilité et épuisement des nutriments
- déclin de précipitation et rendement réduit
- dépendance des engrais
3.4 Water supply
Water supply for the land on which the Technology is applied:
- mixed rainfed-irrigated
3.5 SLM group to which the Technology belongs
- improved ground/ vegetation cover
- minimal soil disturbance
3.6 SLM measures comprising the Technology
agronomic measures
- A3: Soil surface treatment
- A7: Others
vegetative measures
- V1: Tree and shrub cover
Comments:
culture intercalaire / associée, paillage, travail du sol minimum, travail du sol isohypse, briser un sous-sol compacté
3.7 Main types of land degradation addressed by the Technology
soil erosion by water
- Wt: loss of topsoil/ surface erosion
physical soil deterioration
- Pc: compaction
water degradation
- Ha: aridification
Comments:
Causes principales de la dégradation: changement des précipitations saisonnières (decline), éducation, accès à la connaissance et aux conseils (Lack of knowledge of the technology and low levels of general education)
Causes secondaires de la dégradation: gestion des cultures (annuelles, pérennes, arbre/buissons) (poor varieties eg farmers started growing Kwale wheat, a drought-escaping crop (DEC) that also provides good yields)
3.8 Prevention, reduction, or restoration of land degradation
Specify the goal of the Technology with regard to land degradation:
- reduce land degradation
4. Technical specifications, implementation activities, inputs, and costs
4.1 Technical drawing of the Technology
Technical specifications (related to technical drawing):
Connaissances techniques requises pour conseillers: moyen
Connaissances techniques requises pour les utilisateurs de terres: moyen
Fonctions tecniques: contrôle de la battance (‘splash’), amélioration de la structure de la couche arable du sol (tassement, compaction), augmentation de l'infiltration, augmentation / maintien de la rétention d'eau dans le sol, promouvoir la germination par réduction du dérangement du sol, récupération de l’eau / augmentation des réserves d’eau
4.5 Maintenance/ recurrent activities
Activity | Timing/ frequency | |
---|---|---|
1. | Déchaumage du sol | saison sèche, aprés récolte, avant saison de pluies |
2. | Epandage des résidus comme paillage (env. 3t/ha) | saison sèche, avant plantation |
3. | Sous-solage avec la charrue modifiée à 10 cm de profondeur, espacement des lignes de 20-30 cm | saison sèche |
4. | Sous-solage profond : en cas de semelle de labour / Semis et apport d’engrais minéral (azote, phosphore) à raison de 20 kg/ha, près des graines | tous les 3 ans |
5. | Association d’une légumineuse (Dolichos lablab) avec la céréale (mesure supplémentaire), Dolichos doit être replanté tous les 3 ans |
4.6 Costs and inputs needed for maintenance/ recurrent activities (per year)
Specify input | Unit | Quantity | Costs per Unit | Total costs per input | % of costs borne by land users | |
---|---|---|---|---|---|---|
Labour | None | None | 1.0 | 25.0 | 25.0 | 100.0 |
Plant material | None | None | 1.0 | 25.0 | 25.0 | 100.0 |
Fertilizers and biocides | None | None | 1.0 | 8.0 | 8.0 | 100.0 |
Fertilizers and biocides | None | None | 1.0 | 35.0 | 35.0 | 100.0 |
Total costs for maintenance of the Technology | 93.0 | |||||
Total costs for maintenance of the Technology in USD | 93.0 |
Comments:
Un couple de boeuf et 1 charrue Rampstad. Les coûts pour la traction animale incluient le labour. Les coûts pour les semences sont calculés pour le blé.
Le calcul du coût des charges pour la location de matériel, d’animaux et du meneur est inclus dans le «coût de main-d’œuvre » de 5 US$/ha. Coût du labour traditionnel est 37.5 US$/ha comparé aux 25 US$/ha pour les travaux de labour de conservation; les autres coûts restent sensiblement les mêmes
4.7 Most important factors affecting the costs
Describe the most determinate factors affecting the costs:
Préparation des terres - equipement etc.
5. Natural and human environment
5.1 Climate
Annual rainfall
- < 250 mm
- 251-500 mm
- 501-750 mm
- 751-1,000 mm
- 1,001-1,500 mm
- 1,501-2,000 mm
- 2,001-3,000 mm
- 3,001-4,000 mm
- > 4,000 mm
Agro-climatic zone
- semi-arid
5.2 Topography
Slopes on average:
- flat (0-2%)
- gentle (3-5%)
- moderate (6-10%)
- rolling (11-15%)
- hilly (16-30%)
- steep (31-60%)
- very steep (>60%)
Landforms:
- plateau/plains
- ridges
- mountain slopes
- hill slopes
- footslopes
- valley floors
Altitudinal zone:
- 0-100 m a.s.l.
- 101-500 m a.s.l.
- 501-1,000 m a.s.l.
- 1,001-1,500 m a.s.l.
- 1,501-2,000 m a.s.l.
- 2,001-2,500 m a.s.l.
- 2,501-3,000 m a.s.l.
- 3,001-4,000 m a.s.l.
- > 4,000 m a.s.l.
5.3 Soils
Soil depth on average:
- very shallow (0-20 cm)
- shallow (21-50 cm)
- moderately deep (51-80 cm)
- deep (81-120 cm)
- very deep (> 120 cm)
Soil texture (topsoil):
- medium (loamy, silty)
- fine/ heavy (clay)
Topsoil organic matter:
- medium (1-3%)
- low (<1%)
5.6 Characteristics of land users applying the Technology
Market orientation of production system:
- subsistence (self-supply)
- mixed (subsistence/ commercial)
Off-farm income:
- 10-50% of all income
Relative level of wealth:
- poor
- average
Individuals or groups:
- groups/ community
Indicate other relevant characteristics of the land users:
beaucoup de paysans de petite échelle travaillent à temps partiel dans des fermes horticulture de grande échelle
5.7 Average area of land used by land users applying the Technology
- < 0.5 ha
- 0.5-1 ha
- 1-2 ha
- 2-5 ha
- 5-15 ha
- 15-50 ha
- 50-100 ha
- 100-500 ha
- 500-1,000 ha
- 1,000-10,000 ha
- > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
- small-scale
5.8 Land ownership, land use rights, and water use rights
Land ownership:
- individual, titled
Land use rights:
- leased
- individual
6. Impacts and concluding statements
6.1 On-site impacts the Technology has shown
Socio-economic impacts
Production
crop production
fodder production
Income and costs
farm income
Socio-cultural impacts
community institutions
SLM/ land degradation knowledge
Ecological impacts
Water cycle/ runoff
surface runoff
Quantity before SLM:
50
Quantity after SLM:
20
excess water drainage
evaporation
Soil
soil moisture
soil cover
soil loss
6.2 Off-site impacts the Technology has shown
reliable and stable stream flows in dry season
downstream flooding
downstream siltation
groundwater/ river pollution
6.4 Cost-benefit analysis
How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:
positive
Long-term returns:
very positive
Comments:
L’investissement initial peut être élevé (achat d’équipement neuf). Les coûts diminuent sur le long terme et les bénéfices augmentent
6.5 Adoption of the Technology
Comments:
200 familles ont accepté la technologie sans subventions. La zone concernée par la technologie représente 4 km². La tendance est à l’augmentation de l’adoption
Quelques paysans innovateurs ont noté la pratique dans les fermes de grande échelle et ont décidé de la tester chez eux.
6.7 Strengths/ advantages/ opportunities of the Technology
Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view |
---|
Meilleure géstion du sol et de l eau |
Rendements de cultures améliorés |
Enorme potentiel des revenues augmentés |
Production durable et stable |
Intensification de la production avec des intrants réduits (win-win situation) |
6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them
Weaknesses/ disadvantages/ risks in the land user’s view | How can they be overcome? |
---|---|
Coûts d’entretien élevés pour le matériel et les animaux | possibilité de prêts (micro financements); création de groupes d’entraide de paysans pour répartir les coûts |
Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view | How can they be overcome? |
---|---|
L’activité concerne surtout les hommes (équipement lourd / animaux) comparé au travail à la houe | formation des femmes |
Saturation des sols | plan d’urgence pour le drainage de l’excès d’eau les années très pluvieuses : 1 sur 10 - assez fréquentes |
Pas d’avancée notable les années extrêmes | prévenir les fermiers pour éviter qu’ils se découragent |
Davantage d’adventices; nécessite parfois l’utilisation d’herbicides en pré-levée | le paillage réduit cet inconvénient |
Conflit autour de l’utilisation des résidus: paillage ou nourriture pour le bétail | de meilleurs rendements peuvent permettre d’acheter du fourrage : plus de biomasse / matériau de paillage |
7. References and links
7.1 Methods/ sources of information
- field visits, field surveys
- interviews with land users
7.2 References to available publications
Title, author, year, ISBN:
Kihara FI. 1999. An investigation into the soil loss problem in the Upper Ewaso Ng’iro basin, Kenya. MSc. Thesis. University of Nairobi, Kenya
Title, author, year, ISBN:
Mutunga C.N. 1995. The influence of vegetation cover on runoff and soil loss – a study in Mukogodo, Laikipia district Kenya. MSc Thesis, University of Nairobi, Kenya
Title, author, year, ISBN:
Ngigi S.N. 2003. Rainwater Harvesting for improved land productivity in the Greater Horn of Africa. Kenya Rainwater Association, Nairobi
Title, author, year, ISBN:
Liniger HP. and D.B. Thomas. 1998. GRASS – Ground Cover for Restoration of Arid and Semi-arid Soils.
Available from where? Costs?
Advances in GeoEcology 31, 1167–1178. Catena Verlag, Reiskirchen
Links and modules
Expand all Collapse allLinks
No links
Modules
No modules