Technologies

Paved and grassed waterways [Ethiopia]

Feses (Amharic)

technologies_1079 - Ethiopia

Completeness: 63%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:
SLM specialist:

Estifanos Zena

Ministry of Agriculture and Rural Development, Addis Ababa

Ethiopia

Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Ministry of Agriculture and Rural Development of Ethiopia (Ministry of Agriculture and Rural Development) - Ethiopia

1.3 Conditions regarding the use of data documented through WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Ja

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

A waterway is an artficial drainage channel constructed along the steepest slope to receive runoff from cutoff drains and graded structures and drain to the natural waterway safely.

2.2 Detailed description of the Technology

Description:

A vegetative waterway is constructed in areas where stone is not available and in gentle slopes. Paved waterways are suitable in steeper terrains and areas with large amount of stones. The waterway carries excess water to the river, reservoirs or gullies safely with out creating erosion. It is applicable in all areas where excess water is generated when high rains are received which are beyound the intake capacity of soils. The excess water then will have to be disposed sefely to natural outlets. Waterways are established a year or two before cutoff drains and field structures are constructed. Vegetative waterways are formed by digging earth channel across the contour in the direction of flow. After making the channel suitable grass species are planted or are made to establish naturally. Maintenance is very vital in waterways. Breaks in channel or embankments, moving of silt deposited or keeping the grass shorter in order that it does not obstract flow. Vegetative waterways could be stablized by planting short growing grasses, sodding or letting natural growth.

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Ethiopia

Region/ State/ Province:

South Gonder

Further specification of location:

Genbegna, Ayiba, Megish

Specify the spread of the Technology:
  • evenly spread over an area
If precise area is not known, indicate approximate area covered:
  • 10-100 km2
Comments:

The technology is practiced in 34 Kebeles in the Woreda.

2.6 Date of implementation

If precise year is not known, indicate approximate date:
  • more than 50 years ago (traditional)

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • through projects/ external interventions
Comments (type of project, etc.):

introduced and farmers experience

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • reduce, prevent, restore land degradation

3.2 Current land use type(s) where the Technology is applied

Land use mixed within the same land unit:

Ja

Specify mixed land use (crops/ grazing/ trees):
  • Agro-silvopastoralism

Cropland

Cropland

  • Annual cropping
  • teff
Number of growing seasons per year:
  • 1
Specify:

Longest growing period in days: 210 Longest growing period from month to month: May - Dec

Grazing land

Grazing land

Extensive grazing:
  • Semi-nomadic pastoralism
Forest/ woodlands

Forest/ woodlands

  • (Semi-)natural forests/ woodlands
  • Tree plantation, afforestation
(Semi-)natural forests/ woodlands: Specify management type:
  • Selective felling
Products and services:
  • Fuelwood
  • Grazing/ browsing
  • Nature conservation/ protection
Comments:

Major land use problems (compiler’s opinion): soil erosion, flooding, decline of production and productivity.

Major land use problems (land users’ perception): soil erosion, shortage of feed and fodder, low productivity.

3.4 Water supply

Water supply for the land on which the Technology is applied:
  • rainfed

3.5 SLM group to which the Technology belongs

  • cross-slope measure
  • surface water management (spring, river, lakes, sea)

3.6 SLM measures comprising the Technology

agronomic measures

agronomic measures

  • A7: Others
vegetative measures

vegetative measures

  • V2: Grasses and perennial herbaceous plants
structural measures

structural measures

  • S3: Graded ditches, channels, waterways
Comments:

Main measures: vegetative measures, structural measures

Type of agronomic measures: early planting

Type of vegetative measures: aligned: -graded strips *<sup>3</sup>

3.7 Main types of land degradation addressed by the Technology

soil erosion by water

soil erosion by water

  • Wg: gully erosion/ gullying
Comments:

Main type of degradation addressed: Wg: gully erosion / gullying

Secondary types of degradation addressed: Wg: gully erosion / gullying

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • reduce land degradation
Comments:

Secondary goals: prevention of land degradation, rehabilitation / reclamation of denuded land

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

Technical specifications (related to technical drawing):

Technical knowledge required for field staff / advisors: moderate

Technical knowledge required for land users: high

Main technical functions: control of concentrated runoff: drain / divert

Secondary technical functions: control of dispersed runoff: retain / trap, control of concentrated runoff: retain / trap

Early planting
Material/ species: grass
Remarks: aligment layout

Aligned: -graded strips
Vegetative material: G : grass

Grass species: local grass

Waterway
Depth of ditches/pits/dams (m): 0.3-0.4m
Width of ditches/pits/dams (m): 2-3m
Length of ditches/pits/dams (m): 50-100m

Construction material (stone): medium sized (big and small stones avoided)

Slope (which determines the spacing indicated above): 15%

If the original slope has changed as a result of the Technology, the slope today is: 15%

Lateral gradient along the structure: 20%

Other type of management: change of management / intensity level - controlling, maintaining and guarding.

4.2 General information regarding the calculation of inputs and costs

other/ national currency (specify):

Birr

If relevant, indicate exchange rate from USD to local currency (e.g. 1 USD = 79.9 Brazilian Real): 1 USD =:

8.6

Indicate average wage cost of hired labour per day:

0.80

4.3 Establishment activities

Activity Timing (season)
1. determine the drainage area dry season
2. excavate and pile the soil on one or both side dry season
3. sods-local grass dry season
4. excavation and stone paving dry season
5. stone check dry season

4.5 Maintenance/ recurrent activities

Activity Timing/ frequency
1. Collecting planting materials beginning of rainy season /
2. Planting on pits rainy season /
3. resod-local grass after rain /once
4. repairing the broken part after ran/once
5. Collection of stones dry season / annual
6. Planting grass during rains / annual

4.7 Most important factors affecting the costs

Describe the most determinate factors affecting the costs:

stone availability, finance, topography

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Specifications/ comments on rainfall:

It ranges between 1200-1599 mm

Agro-climatic zone
  • humid
  • sub-humid

Subhumid (ranked 1) in woina dega
Humid (ranked 2)

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
Comments and further specifications on topography:

Altitudinal zone: Ranges between 1500-4033 m a.s.l.
Landforms: Mountain slopes (ranked 1), ridges (ranked 2) and plateau/plains as well as hill slopes (both ranked 3)
Slopes on average: Hilly (ranked 1), rolling (ranked 2) and steep (ranked 3)

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • fine/ heavy (clay)
Topsoil organic matter:
  • low (<1%)
If available, attach full soil description or specify the available information, e.g. soil type, soil PH/ acidity, Cation Exchange Capacity, nitrogen, salinity etc.

Soil depth on average: Very shallow (ranked 1), shallow (ranked 2) and moderately deep (ranked 3)
Soil texture: Fine/heavy ( on the top/surface, ranked 1) also medium (at depth , ranked 2) and coarse/light (ranked 3)
Soil fertility is low (ranked 1), medium (ranked 2) and high (ranked 3)
Soil drainage/infiltration is good (ranked 1), medium (ranked 2) and poor (ranked 3)
Soil water storage capacity is low (ranked 1), medium (ranked 2) and high (ranked 3)

5.6 Characteristics of land users applying the Technology

Market orientation of production system:
  • subsistence (self-supply)
Off-farm income:
  • less than 10% of all income
Relative level of wealth:
  • very poor
  • poor
Level of mechanization:
  • manual work
  • animal traction
Indicate other relevant characteristics of the land users:

Population density: 200-500 persons/km2

Annual population growth: 2% - 3%

40% of the land users are poor and own 20% of the land.
60% of the land users are poor and own 30% of the land.
Level of mechanization is animal traction (ranked 1) and manual labour (ranked 2)
Market orientation of production system: Also mixed (subsistence/ commercial)

5.7 Average area of land used by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Comments:

Average area of land owned or leased by land users applying the Technology: 0.5-0.75 ha

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • state
Land use rights:
  • individual

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

fodder production

decreased
increased

fodder quality

decreased
increased

production area

decreased
increased
Income and costs

farm income

decreased
increased

Socio-cultural impacts

SLM/ land degradation knowledge

reduced
improved

Ecological impacts

Water cycle/ runoff

excess water drainage

reduced
improved
Soil

soil loss

increased
decreased
Other ecological impacts

Soil fertility

decreased
increased

6.2 Off-site impacts the Technology has shown

downstream flooding

increased
reduced

downstream siltation

increased
decreased

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

positive

Long-term returns:

very positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

positive

Long-term returns:

positive

6.5 Adoption of the Technology

Of all those who have adopted the Technology, how many did so spontaneously, i.e. without receiving any material incentives/ payments?
  • 91-100%
Comments:

5 land user families have adopted the Technology without any external material support

Comments on spontaneous adoption: estimates

There is a moderate trend towards spontaneous adoption of the Technology

Comments on adoption trend: Waterways require high labour and material, which a poor farmer can not have. Moreover, the land taken by the measures will be prohibitive to be practiced by a smallholder farmers.

6.7 Strengths/ advantages/ opportunities of the Technology

Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
due to increased benefit obtained by the community and awarness created

How can they be sustained / enhanced? better/proper followup, maintenance, monitoring and evalution, expansion of the technology. Establish bylaws,regulations to protect assetes created.
increased fodder production

How can they be sustained / enhanced? provision of suitable planted material.

7. References and links

7.1 Methods/ sources of information

Links and modules

Expand all Collapse all

Modules