Using organic fertilizers on small-scale irrigation plots [Mali]
- Creation:
- Update:
- Compiler: Dieter Nill
- Editor: –
- Reviewers: David Streiff, Alexandra Gavilano
Apport de fumure organique dans les parcelles de petite irrigation (French)
technologies_1228 - Mali
View sections
Expand all Collapse all1. General information
1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology
SLM specialist:
Dako Jean Parfait
National Directorate of Agriculture
Mali
Name of project which facilitated the documentation/ evaluation of the Technology (if relevant)
Good Practices in Soil and Water Conservation - A contribution to adaptation and farmers ́ resilience towards climate change in the Sahel (GIZ)Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH (GIZ) - GermanyName of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
United Nations Development Program (United Nations Development Program) - Tajikistan1.3 Conditions regarding the use of data documented through WOCAT
The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:
Ja
1.4 Declaration on sustainability of the described Technology
Is the Technology described here problematic with regard to land degradation, so that it cannot be declared a sustainable land management technology?
Nee
2. Description of the SLM Technology
2.1 Short description of the Technology
Definition of the Technology:
Organic fertiliser enhances the productivity of the soil, as well as its capacity for infiltration and water retention.
2.2 Detailed description of the Technology
Description:
Smallholding farmland lends itself to market gardening and rice and maize growing. Applying five tonnes of organic fertiliser per hectare for cereal growing and 20 tonnes per hectare for vegetable growing significantly improves soil fertility in small-scale irrigation schemes. The most commonly used organic fertilisers are: compost; straw pen manure with litter or household waste.
Purpose of the Technology: The objective of using organic fertiliser is to enhance productivity by improving the structure and fertility of the soil, as well as its capacity for infiltration and water retention. It stimulates biological activity in the soil and increases yields and production. Increasing the level of organic matter in the soil (humus) enhances its capacity to store nutrients (cation-exchange capacity) and water.
Establishment / maintenance activities and inputs: Farming advisors provide producers with training on techniques for preparing and applying the different types of organic fertiliser.
Composting: The actions required are: digging the composting pit; filling the pit; looking after the pit; applying the compost to the land.
The composting pit: the collection and stockpiling of straw pen manure; the application of the manure to the land.
Household waste: The collection and stockpiling of household waste; the application of the household waste to the land.
Farming advisors monitor how growers produce and apply organic fertiliser. Growers dig the composting and slurry pits, transport organic matter to fill the pits, and manage the upkeep and oversight of the pits.
The frequency of organic fertiliser application varies from once a year to every three years and depends on its quality and quantity.
This activity requires basic equipment (cart, wheelbarrow) to transport the organic matter.
Natural / human environment: This practice is being popularised throughout the areas in and around irrigation schemes throughout Mali.
2.3 Photos of the Technology
2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment
Country:
Mali
Region/ State/ Province:
Mali
Comments:
The practice is being popularised throughout the areas in and around irrigation schemes.
Map
×2.6 Date of implementation
If precise year is not known, indicate approximate date:
- less than 10 years ago (recently)
2.7 Introduction of the Technology
Specify how the Technology was introduced:
- through projects/ external interventions
Comments (type of project, etc.):
Ongoing for around 10 years
3. Classification of the SLM Technology
3.1 Main purpose(s) of the Technology
- access to fertilizer
3.2 Current land use type(s) where the Technology is applied
Land use mixed within the same land unit:
Ja
Specify mixed land use (crops/ grazing/ trees):
- Agro-pastoralism (incl. integrated crop-livestock)
Cropland
- Annual cropping
- rice
Number of growing seasons per year:
- 1
Specify:
Longest growing period in days: 120; Longest growing period from month to month: August-November
Grazing land
Comments:
Major land use problems (compiler’s opinion): soil fertility decline, low capacity for infiltration and water retention
Livestock density: 1-10 LU /km2
3.4 Water supply
Water supply for the land on which the Technology is applied:
- mixed rainfed-irrigated
3.5 SLM group to which the Technology belongs
- integrated soil fertility management
3.6 SLM measures comprising the Technology
agronomic measures
- A2: Organic matter/ soil fertility
Comments:
Type of agronomic measures: manure / compost / residues
3.7 Main types of land degradation addressed by the Technology
chemical soil deterioration
- Cn: fertility decline and reduced organic matter content (not caused by erosion)
biological degradation
- Bq: quantity/ biomass decline
water degradation
- Ha: aridification
Comments:
Main causes of degradation: crop management (annual, perennial, tree/shrub), droughts, population pressure
3.8 Prevention, reduction, or restoration of land degradation
Specify the goal of the Technology with regard to land degradation:
- reduce land degradation
- restore/ rehabilitate severely degraded land
4. Technical specifications, implementation activities, inputs, and costs
4.1 Technical drawing of the Technology
Technical specifications (related to technical drawing):
Technical knowledge required for field staff / advisors: moderate
Technical knowledge required for land users: low
Main technical functions: improvement of ground cover, improvement of surface structure (crusting, sealing), improvement of topsoil structure (compaction), increase in organic matter, increase in nutrient availability (supply, recycling,…), increase of biomass (quantity), promotion of vegetation species and varieties (quality, eg palatable fodder)
Secondary technical functions: control of raindrop splash, increase of infiltration, increase / maintain water stored in soil
4.5 Maintenance/ recurrent activities
Activity | Timing/ frequency | |
---|---|---|
1. | looking after the pit | |
2. | The collection and stockpiling of straw pen manure or household waste | |
3. | applying the compost/household waste to the land |
4.6 Costs and inputs needed for maintenance/ recurrent activities (per year)
Comments:
Machinery/ tools: basic equipment (cart, wheelbarrow) to transport the organic matter
4.7 Most important factors affecting the costs
Describe the most determinate factors affecting the costs:
Production costs are low given that the local materials involved are available freely or at very low cost. This activity requires basic equipment (cart, wheelbarrow) to transport the organic
matter.
5. Natural and human environment
5.1 Climate
Annual rainfall
- < 250 mm
- 251-500 mm
- 501-750 mm
- 751-1,000 mm
- 1,001-1,500 mm
- 1,501-2,000 mm
- 2,001-3,000 mm
- 3,001-4,000 mm
- > 4,000 mm
Agro-climatic zone
- semi-arid
Thermal climate class: tropics
5.2 Topography
Slopes on average:
- flat (0-2%)
- gentle (3-5%)
- moderate (6-10%)
- rolling (11-15%)
- hilly (16-30%)
- steep (31-60%)
- very steep (>60%)
Landforms:
- plateau/plains
- ridges
- mountain slopes
- hill slopes
- footslopes
- valley floors
Altitudinal zone:
- 0-100 m a.s.l.
- 101-500 m a.s.l.
- 501-1,000 m a.s.l.
- 1,001-1,500 m a.s.l.
- 1,501-2,000 m a.s.l.
- 2,001-2,500 m a.s.l.
- 2,501-3,000 m a.s.l.
- 3,001-4,000 m a.s.l.
- > 4,000 m a.s.l.
5.3 Soils
Soil depth on average:
- very shallow (0-20 cm)
- shallow (21-50 cm)
- moderately deep (51-80 cm)
- deep (81-120 cm)
- very deep (> 120 cm)
Soil texture (topsoil):
- medium (loamy, silty)
- fine/ heavy (clay)
Topsoil organic matter:
- medium (1-3%)
- low (<1%)
If available, attach full soil description or specify the available information, e.g. soil type, soil PH/ acidity, Cation Exchange Capacity, nitrogen, salinity etc.
Soil fertility is medium
Soil drainage / infiltration is poor - medium
Soil water storage capacity is medium
5.4 Water availability and quality
Ground water table:
5-50 m
Availability of surface water:
medium
Water quality (untreated):
for agricultural use only (irrigation)
Comments and further specifications on water quality and quantity:
Availability of surface water: medium, poor/ none
5.5 Biodiversity
Species diversity:
- medium
5.6 Characteristics of land users applying the Technology
Market orientation of production system:
- mixed (subsistence/ commercial)
Off-farm income:
- 10-50% of all income
Relative level of wealth:
- poor
- average
Level of mechanization:
- manual work
Gender:
- men
Indicate other relevant characteristics of the land users:
Population density: < 10 persons/km2
Annual population growth: 2% - 3%
10% of the land users are rich.
50% of the land users are average wealthy.
30% of the land users are poor.
10% of the land users are poor.
5.7 Average area of land used by land users applying the Technology
- < 0.5 ha
- 0.5-1 ha
- 1-2 ha
- 2-5 ha
- 5-15 ha
- 15-50 ha
- 50-100 ha
- 100-500 ha
- 500-1,000 ha
- 1,000-10,000 ha
- > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
- small-scale
5.8 Land ownership, land use rights, and water use rights
Comments:
The irrigated land is allocated by the chief
5.9 Access to services and infrastructure
health:
- poor
- moderate
- good
education:
- poor
- moderate
- good
technical assistance:
- poor
- moderate
- good
employment (e.g. off-farm):
- poor
- moderate
- good
markets:
- poor
- moderate
- good
energy:
- poor
- moderate
- good
roads and transport:
- poor
- moderate
- good
drinking water and sanitation:
- poor
- moderate
- good
financial services:
- poor
- moderate
- good
6. Impacts and concluding statements
6.1 On-site impacts the Technology has shown
Socio-economic impacts
Production
crop production
risk of production failure
production area
Water availability and quality
demand for irrigation water
Income and costs
expenses on agricultural inputs
farm income
Socio-cultural impacts
food security/ self-sufficiency
SLM/ land degradation knowledge
livelihood and human well-being
Comments/ specify:
Applying five tonnes of organic fertiliser per hectare for cereal growing and 20 tonnes per hectare for vegetable growing significantly improves soil fertility in small-scale irrigation schemes
Ecological impacts
Soil
soil moisture
soil cover
soil loss
soil crusting/ sealing
soil compaction
nutrient cycling/ recharge
soil organic matter/ below ground C
Biodiversity: vegetation, animals
biomass/ above ground C
Climate and disaster risk reduction
drought impacts
Other ecological impacts
capacity to store nutrients and water
6.2 Off-site impacts the Technology has shown
downstream flooding
downstream siltation
wind transported sediments
damage on neighbours' fields
6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)
Gradual climate change
Gradual climate change
Season | increase or decrease | How does the Technology cope with it? | |
---|---|---|---|
annual temperature | increase | well |
Climate-related extremes (disasters)
Meteorological disasters
How does the Technology cope with it? | |
---|---|
local rainstorm | not well |
local windstorm | not well |
Climatological disasters
How does the Technology cope with it? | |
---|---|
drought | well |
Hydrological disasters
How does the Technology cope with it? | |
---|---|
general (river) flood | not well |
Other climate-related consequences
Other climate-related consequences
How does the Technology cope with it? | |
---|---|
reduced growing period | well |
6.4 Cost-benefit analysis
How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:
positive
Long-term returns:
very positive
How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:
very positive
Long-term returns:
very positive
6.7 Strengths/ advantages/ opportunities of the Technology
Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view |
---|
Maintains soil fertility and improves its structure |
Stimulates biological activity in the soil and increases yields and production |
Increasing the level of organic matter in the soil (humus) enhances its capacity to store nutrients (cation-exchange capacity) and water |
Organic fertiliser is less expensive than chemical fertilizer. Production costs are low given that the local materials involved are available freely or at very low cost. |
6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them
Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view | How can they be overcome? |
---|---|
Lack of equipment for collecting organic matter and water shortages in the dry season | |
Particularly in semi-arid areas, not enough biomass is available to systematically provide the quantities required to cover all the land being farmed. Compost is therefore often reserved for cash crops. | |
This activity requires basic equipment (cart, wheelbarrow) to transport the organic matter. |
7. References and links
7.1 Methods/ sources of information
- field visits, field surveys
- interviews with land users
When were the data compiled (in the field)?
01/07/2012
7.2 References to available publications
Title, author, year, ISBN:
Manual of Good Practices in Small Scale Irrigation in the Sahel. Experiences from Mali. Published by GIZ in 2014.
Available from where? Costs?
http://star-www.giz.de/starweb/giz/pub/servlet.starweb
Title, author, year, ISBN:
Technical fact sheets on organic fertiliser (DNA)
Links and modules
Expand all Collapse allLinks
No links
Modules
No modules