This is an outdated, inactive version of this case. Go to the current version.
Technologies
Inactive

Resoiling (Pit with manure) [Philippines]

technologies_1575 - Philippines

Completeness: 69%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Mariano Marcos State University (MMSU) - Philippines
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Bureau of Soils and Water Management (Bureau of Soils and Water Management) - Philippines

1.3 Conditions regarding the use of data documented through WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Yes

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

Replacing the sand in the planting hole with soil for the proper nourishment of newly planted trees and for better moisture retention and storage.

2.2 Detailed description of the Technology

Description:

The technology is used in two contrasting geological environment: 1) sand dunes formed through the action of wind, and 2) lahar flows caused by the eruption of Mt. Pinatubo volcano in 1991. Lahars are the pyroclastic materials deposited in the lowland through the action of water, usually several meters in thickness. Both landscape have the same characteristics: some climatic type characterized by long dry season (7 months), high silica content, high erodibility and low water holding capacity, hence, droughty. The total annual rainfall is about 2,000 mm which occur from May to October. Sand dunes and crop establishment (mango) is done by digging a hole usually 1 x 1 x 1 meter. The sand is replaced by true soil mixed with organic fertilizer. Planting is done at the onset of the rainy season, usually June. Frequent fertilization is done. Manual irrigation is necessary during the dry season. The fruit tree crops suitable in the area are mango and cashew. Afforestations species include Casuarina equisentifolia and Acacia auricoliformis. Gliricidia sepium which is a very valuable fuelwood thrives well also. Grasses particularly Sacharum spontaneum can spontaneously colorize the area, especially that of lahar.

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Philippines

Region/ State/ Province:

Ilocos Norte; Pampanga and Tarlac

Further specification of location:

Ilocos Norte; Pampanga

2.6 Date of implementation

If precise year is not known, indicate approximate date:
  • less than 10 years ago (recently)

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • during experiments/ research
Comments (type of project, etc.):

The technology has been practiced for generations under various environmental conditions, usually in fertile-poor areas.

3. Classification of the SLM Technology

3.2 Current land use type(s) where the Technology is applied

Grazing land

Grazing land

Cropland

Cropland

  • Tree and shrub cropping
Comments:

Major land use problems (compiler’s opinion): High erosion hazard by wind and water, very low soil fertility and water holding capacity (droughty).

Major land use problems (land users’ perception): High fertilizer and water requirement.

3.3 Further information about land use

Number of growing seasons per year:
  • 2
Specify:

Longest growing period in days: 240

Longest growing period from month to month: May - Dec

Second longest growing period in days: 210

Second longest growing period from month to month: Jun - Nov

3.5 Spread of the Technology

Specify the spread of the Technology:
  • evenly spread over an area
If the Technology is evenly spread over an area, indicate approximate area covered:
  • 1-10 km2
Comments:

Total area covered by the SLM Technology is 3 m2.

The technology was used in two contrasting environments: sand dunes and lahar flows caused by the eruption of Mt. Pinatubo volcano in 1991. Both have almost similar characteristics, however- high content of Si, low fertility and very droughty. The technology is a land reclamation measure.

3.6 SLM measures comprising the Technology

3.7 Main types of land degradation addressed by the Technology

soil erosion by wind

soil erosion by wind

  • Et: loss of topsoil
soil erosion by water

soil erosion by water

  • Wt: loss of topsoil/ surface erosion
chemical soil deterioration

chemical soil deterioration

  • Cn: fertility decline and reduced organic matter content (not caused by erosion)
Comments:

Main type of degradation addressed: Cn: fertility decline and reduced organic matter content

Secondary types of degradation addressed: Wt: loss of topsoil / surface erosion, Et: loss of topsoil

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • restore/ rehabilitate severely degraded land
Comments:

Main goals: rehabilitation / reclamation of denuded land

4. Technical specifications, implementation activities, inputs, and costs

4.2 Technical specifications/ explanations of technical drawing

Technical knowledge required for field staff / advisors: moderate

Technical knowledge required for land users: moderate

Main technical functions: increase in soil fertility

Secondary technical functions: improvement of ground cover, increase / maintain water stored in soil

Vegetative measure: Aligned
Vegetative material: T : trees / shrubs
Number of plants per (ha): 144
Spacing between rows / strips / blocks (m): 8
Vertical interval within rows / strips / blocks (m): 8
Width within rows / strips / blocks (m): 8

Vegetative measure: Aligned Mango
Vegetative material: T : trees / shrubs
Number of plants per (ha): 100
Spacing between rows / strips / blocks (m): 10
Vertical interval within rows / strips / blocks (m): 10
Width within rows / strips / blocks (m): 10

Vegetative measure: Aligned Cashew
Vegetative material: T : trees / shrubs
Number of plants per (ha): 400
Spacing between rows / strips / blocks (m): 5
Vertical interval within rows / strips / blocks (m): 5
Width within rows / strips / blocks (m): 5

Vegetative measure: Vegetative material: T : trees / shrubs

Trees/ shrubs species: Casuarina equisetifolia

Fruit trees / shrubs species: Mango, Cashew

Grass species: Native grasses

4.3 General information regarding the calculation of inputs and costs

other/ national currency (specify):

Peso

Indicate exchange rate from USD to local currency (if relevant): 1 USD =:

50.0

Indicate average wage cost of hired labour per day:

3.00

4.4 Establishment activities

Activity Type of measure Timing
1. Digging of holes Vegetative beginning of rainy season
2. Hauling of fill materials (for resoiling) Vegetative beginning of rainy season
3. Transplanting of fruit tree seedlings Vegetative beginning of rainy season

4.5 Costs and inputs needed for establishment

Comments:

Duration of establishment phase: 12 month(s)

4.6 Maintenance/ recurrent activities

Activity Type of measure Timing/ frequency
1. Fertilization Vegetative every 6 months from planting /
2. Watering Vegetative weekly during dry season /

4.7 Costs and inputs needed for maintenance/ recurrent activities (per year)

Comments:

Machinery/ tools: iron bar, spade, sprayers, pail, bolo

The calculation was based on 100 mango plants per hectare. The items considered were seedling cost, fertilizer and labor for hole digging, hauling of filling materials, planting and maintenance cost for watering and fertilizat

4.8 Most important factors affecting the costs

Describe the most determinate factors affecting the costs:

Soil texture is the most crucial factor affecting costs. High labor is required in hauling filling materials to replace the sand in the planting hole. Also because of low water holding capacity, the plants have to be watered at least once a week during the dry season.

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Agro-climatic zone
  • sub-humid
  • semi-arid

Thermal climate class: tropics

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • coarse/ light (sandy)
Topsoil organic matter:
  • low (<1%)

5.6 Characteristics of land users applying the Technology

Market orientation of production system:
  • subsistence (self-supply)
  • commercial/ market
Off-farm income:
  • 10-50% of all income
Relative level of wealth:
  • average
  • rich
Level of mechanization:
  • manual work
  • mechanized/ motorized
Indicate other relevant characteristics of the land users:

Population density: 200-500 persons/km2

Annual population growth: 2% - 3%

5% of the land users are very rich and own 5% of the land.
10% of the land users are rich and own 10% of the land.
60% of the land users are average wealthy and own 70% of the land.
20% of the land users are poor and own 10% of the land.

Off-farm income specification: Carpentry, trading and working in other farms

5.7 Average area of land owned or leased by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Comments:

Average area of land owned or leased by land users applying the Technology: 0.5-1 ha, 1-2 ha, 2-5 ha

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • state
  • individual, titled
Land use rights:
  • communal (organized)
  • leased

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

fodder production

decreased
increased

fodder quality

decreased
increased

wood production

decreased
increased
Income and costs

farm income

decreased
increased

Socio-cultural impacts

conflict mitigation

worsened
improved

Ecological impacts

Soil

soil cover

reduced
improved
Climate and disaster risk reduction

wind velocity

increased
decreased
Other ecological impacts

6.2 Off-site impacts the Technology has shown

reliable and stable stream flows in dry season

reduced
increased

downstream flooding

increased
reduced

downstream siltation

increased
decreased

groundwater/ river pollution

increased
reduced

wind transported sediments

increased
reduced

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

negative

Long-term returns:

very positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

negative

Long-term returns:

very positive

6.5 Adoption of the Technology

Comments:

20% of land user families have adopted the Technology without any external material support

30 land user families have adopted the Technology without any external material support

Comments on spontaneous adoption: estimates

There is a moderate trend towards spontaneous adoption of the Technology

Comments on adoption trend: land users are convinced about the technology

6.7 Strengths/ advantages/ opportunities of the Technology

Strengths/ advantages/ opportunities in the land user’s view
It allows the utilization of "useless" barren land

How can they be sustained / enhanced? Government support like inputs/credits
Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
It can make fertile-poor and degraded areas productive

How can they be sustained / enhanced? Sustained information, education campaign (IEC)
It increases the water retention capacity of sandy soils.

6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them

Weaknesses/ disadvantages/ risks in the land user’s view How can they be overcome?
Laborious (hauling of fill materials) Labor-sharing
High maintenance cost (irrigation, fertilizer)
Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view How can they be overcome?
Laborious (hauling of fill materials) Labor-sharing

7. References and links

7.2 References to available publications

Title, author, year, ISBN:

2000 Annual Report, MMSU

Available from where? Costs?

Mariano Marcos State University (MMSU), Batac, Ilocos Norte

Links and modules

Expand all Collapse all

Modules