Technologies

Vegetables in salt affected soil [Oman]

زراعة الخضروات في الترب المالحة

technologies_1316 - Oman

Completeness: 67%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:
SLM specialist:
SLM specialist:
SLM specialist:
SLM specialist:
SLM specialist:
SLM specialist:

AL Abri Fatima

MOAF

Oman

SLM specialist:

Al-Wehaibi Hamdan

MOAF

Oman

Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Test institution (TI) - Albania
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Sultan Qaboos University (SQU) - Oman

1.3 Conditions regarding the use of data documented through WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Yes

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

Growing variety of vegetables in salt affected soils.

2.2 Detailed description of the Technology

Description:

The farm is 5 faddan in area. Vegetables such as eggplants, parsley, spinach and pumpkin are planted in part of the farm on a rotational basis. In the remaining small area other crops which includes rhodes, maize, banana, alfalfa and date palms are grown.
Livestock are part of the farm business from whch substational income is obtained by the household.

Purpose of the Technology: To earn income that suports the livelihood of the household.he income i generated from vegetables, fruits and livestock products.

Establishment / maintenance activities and inputs: Vegetables are established in direct seeding and fruit trees are established in direct seedlings. Seedlings are bought from commercial nurseries.

Natural / human environment: The farm is located in a flat area along the oman sea coast. Most of the farmers in surounding area

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Oman

Region/ State/ Province:

Al Batinah

Further specification of location:

Al Massenah

Specify the spread of the Technology:
  • evenly spread over an area
If the Technology is evenly spread over an area, specify area covered (in km2):

0.021

If precise area is not known, indicate approximate area covered:
  • < 0.1 km2 (10 ha)
Comments:

Total area covered by the SLM Technology is 0.021 km2.

2.6 Date of implementation

If precise year is not known, indicate approximate date:
  • 10-50 years ago

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • through land users' innovation

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • improve production

3.2 Current land use type(s) where the Technology is applied

Cropland

Cropland

  • Annual cropping
  • Tree and shrub cropping
Annual cropping - Specify crops:
  • vegetables - leafy vegetables (salads, cabbage, spinach, other)
  • vegetables - other
Comments:

Constraints of settlement / urban

3.3 Has land use changed due to the implementation of the Technology?

Has land use changed due to the implementation of the Technology?
  • Yes (Please fill out the questions below with regard to the land use before implementation of the Technology)
Cropland

Cropland

  • Annual cropping

3.4 Water supply

Water supply for the land on which the Technology is applied:
  • full irrigation

3.5 SLM group to which the Technology belongs

  • improved plant varieties/ animal breeds

3.6 SLM measures comprising the Technology

agronomic measures

agronomic measures

  • A1: Vegetation/ soil cover
vegetative measures

vegetative measures

  • V2: Grasses and perennial herbaceous plants
management measures

management measures

  • M1: Change of land use type
Comments:

Secondary measures: management measures

Type of agronomic measures: mixed cropping / intercropping, green manure, manure / compost / residues, rotations / fallows, minimum tillage, furrows (drainage, irrigation), pits

3.7 Main types of land degradation addressed by the Technology

other

other

Specify:

Secondary causes of degradation: crop management (annual, perennial, tree/shrub)

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • prevent land degradation

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

Technical specifications (related to technical drawing):

Location: AlMusinah. AlBatina South

Date: 06/01/2016

Technical knowledge required for land users: low

Main technical functions: increase in organic matter

Secondary technical functions: improvement of ground cover, increase in nutrient availability (supply, recycling,…), increase of biomass (quantity)

Change of land use type

Change of land use practices / intensity level

Control / change of species composition

Author:

Eng.Fatima AlKharosi, Oman

4.2 General information regarding the calculation of inputs and costs

other/ national currency (specify):

Omani Rial

If relevant, indicate exchange rate from USD to local currency (e.g. 1 USD = 79.9 Brazilian Real): 1 USD =:

0.39

4.3 Establishment activities

Activity Timing (season)
1. labour

4.4 Costs and inputs needed for establishment

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour Labour unit 2.0 60.0 120.0
Total costs for establishment of the Technology 120.0
Total costs for establishment of the Technology in USD 307.69

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Agro-climatic zone
  • arid

Thermal climate class: tropics

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • coarse/ light (sandy)
Topsoil organic matter:
  • low (<1%)
If available, attach full soil description or specify the available information, e.g. soil type, soil PH/ acidity, Cation Exchange Capacity, nitrogen, salinity etc.

Soil fertility is medium

Soil drainage / infiltration is good

Soil water storage capacity is low

5.4 Water availability and quality

Ground water table:

> 50 m

Availability of surface water:

poor/ none

Water quality (untreated):

for agricultural use only (irrigation)

5.5 Biodiversity

Species diversity:
  • low

5.6 Characteristics of land users applying the Technology

Market orientation of production system:
  • mixed (subsistence/ commercial)
Off-farm income:
  • less than 10% of all income
Relative level of wealth:
  • average
Individuals or groups:
  • groups/ community
Level of mechanization:
  • manual work
  • mechanized/ motorized
Gender:
  • men
Indicate other relevant characteristics of the land users:

Land users applying the Technology are mainly Leaders / privileged

Population density: < 10 persons/km2

5.7 Average area of land used by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
  • small-scale

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • individual, titled

5.9 Access to services and infrastructure

health:
  • poor
  • moderate
  • good
education:
  • poor
  • moderate
  • good
technical assistance:
  • poor
  • moderate
  • good
markets:
  • poor
  • moderate
  • good
roads and transport:
  • poor
  • moderate
  • good

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

fodder production

decreased
increased

fodder quality

decreased
increased

animal production

decreased
increased

risk of production failure

increased
decreased

production area

decreased
increased
Income and costs

farm income

decreased
increased

Socio-cultural impacts

livelihood and human well-being

reduced
improved

Ecological impacts

Soil

soil moisture

decreased
increased

soil cover

reduced
improved

nutrient cycling/ recharge

decreased
increased

soil organic matter/ below ground C

decreased
increased
Biodiversity: vegetation, animals

biomass/ above ground C

decreased
increased

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Gradual climate change

Gradual climate change
Season increase or decrease How does the Technology cope with it?
annual temperature increase not well

Climate-related extremes (disasters)

Climatological disasters
How does the Technology cope with it?
drought not well

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

slightly positive

Long-term returns:

slightly positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

slightly positive

Long-term returns:

slightly positive

6.5 Adoption of the Technology

  • single cases/ experimental

7. References and links

7.1 Methods/ sources of information

Links and modules

Expand all Collapse all

Modules