Technologies

A low-cost polyhouse for tomato production in the rainy season [Nepal]

Sasto Plastic ghar ma barsha golbheda kheti (Main Contributor: Bishnu Bishwakarma, Helvetas Nepal)

technologies_1688 - Nepal

Completeness: 69%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
HELVETAS (Swiss Intercooperation)
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
ICIMOD International Centre for Integrated Mountain Development (ICIMOD) - Nepal

1.3 Conditions regarding the use of data documented through WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Yes

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

Smallholder farmers can use polyhouses to produce high demand vegetables, such as tomatoes, and can earn a substantial income from even a relatively small plot of land in a short time.

2.2 Detailed description of the Technology

Description:

During the wet season (June–October), the monsoon rains severely limit the type of crops that can be grown in open fields and they also restrict the production of seedlings. Low-cost polyhouses can be used to protect crops from excessive rainfall and can provide a sheltered environment for the production of better quality crops over the rainy season cropping period. For example, smallholder farmers who produce high demand vegetables such as tomatoes can earn as much as USD 350–500 from a plot of land which measures only 100 m2 in area over the short time period from June to November. This is much more than they can earn by growing any traditional crop by conventional methods. The Sustainable Soil Management Programme (SSMP) is promoting this technology in several mid-hill districts of Nepal.

Establishment / maintenance activities and inputs: Polyhouses should be situated in well-drained areas where sunshine is abundant and there is no shade throughout the cropping period. The bamboo frame can be constructed earlier in the year but the plastic roofing is not added until after one or two rainfall events. The height of the polyhouse frame varies depending on the altitude. At higher elevations, the polyhouses are lower to help trap more heat and moisture, whereas at lower elevations the polyhouses are higher to allow more air to circulate and moisture to evaporate. The preparations, which take place mid-May to early June, consist of fertilizing the soil and planting the tomato seedlings. Throughout the growing season the tomato plants are staked, trained, and pruned and a top dressing of fertilizer is added to produce a higher quality product.

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Nepal

Further specification of location:

Mid Hills of Nepal

Specify the spread of the Technology:
  • evenly spread over an area
If precise area is not known, indicate approximate area covered:
  • 1-10 km2

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • through projects/ external interventions

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • improve production
  • create beneficial economic impact

3.2 Current land use type(s) where the Technology is applied

Cropland

Cropland

  • Annual cropping
  • tomatoes
Number of growing seasons per year:
  • 1
Specify:

Longest growing period in days: 214; Longest growing period from month to month: May to November

Comments:

Major land use problems (compiler’s opinion): In the mid-hills of Nepal, the arable land of most farm households has been divided into very small plots. If this land is used to produce traditional crops such as maize, wheat, and millet using conventional farming methods, it cannot provide full employment for all of the householders and cannot yield sufficient cash income for the household. The risk of intense rainfall during the monsoon season, which can damage crops, has prevented these farmers from switching to more lucrative high value crops.

3.5 SLM group to which the Technology belongs

  • Greenhouses

3.6 SLM measures comprising the Technology

agronomic measures

agronomic measures

  • A7: Others

3.7 Main types of land degradation addressed by the Technology

soil erosion by water

soil erosion by water

  • Wt: loss of topsoil/ surface erosion
Comments:

Main causes of degradation: Heavy / extreme rainfall (intensity/amounts) (During the summer monsoon (June-October), continuous or heavy rainfall can damage seedlings and erode the land; it is difficult to establish crops during this time.)

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • prevent land degradation

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

Technical specifications (related to technical drawing):

Left: Sketch of a polyhouse. The optimum length is 20 m and the width 5 m. The height of the central and side poles varies depending on the elevation. Note that there should be a space of at least 1 m between polyhouses.

Right top: Cross sectional view of a planting bed showing row-to-row (RXR) and plant-to-plant (PXP) distances. Note that there should be a space of at least 90 cm between beds.

Right bottom: Inside the polyhouse, the tomatoes can be staked using bamboo poles; the plants are trained along these trellises.

Technical knowledge required for land users: moderate

Main technical functions: Increase Productivity, Introduce high value crop

Secondary technical functions: increase in nutrient availability (supply, recycling,…)

Author:

AK Thaku

4.2 General information regarding the calculation of inputs and costs

Specify how costs and inputs were calculated:
  • per Technology unit
Specify unit:

Polyhouse

Specify currency used for cost calculations:
  • USD
Indicate average wage cost of hired labour per day:

4

4.3 Establishment activities

Activity Timing (season)
1. Labour for construction of the Polyhouse
2. Labour for planting, training,pruning,stalking
3. Materials: Bamboo pole, plastics sheet, rope, nails, seed, poles
4. Agricultural: seed, fertilizer, crop protection
Comments:

Details for the establishment of Poly house. Establishment activities 1. Construction of the polyhouse using bamboo poles, wooden posts, clear plastic sheet, nails, and rope. 2. How long it takes to construct the polyhouse and plant the crops depends on how much labour is available. Depending on their level of expertise, four to five people can construct the structure in one day; and two people can complete the soil preparation and planting in one day. Technical guidelines for erecting a polyhouse The optimum length of a polyhouse is 20 m, and the width is 5 m; 400–500 gauge plastic sheeting is used. The height of the polyhouse depends on the elevation: at 1200–1600 masl, the optimum height of the central pole is 3 m and the side poles are 2 m high; at 1600–2000 masl, the central pole is 2.5 m high and the side poles are 1.6 m high. There should be an open space of at least 1 m between polyhouses. Technical guidelines for preparing the soil and planting tomatoes Per plant, at least 3–4 kg of well-decomposed farmyard manure and compost are worked into the soil. Before transplanting the seedlings, the soil around each is dressed with 10 g of DAP (diammonium phosphate) and 6 g of MoP (muriate of potash). The seedlings are transplanted when they are 20–25 days old. In an open row system, the suggested row to row (RxR) spacing is 90 cm and the suggested plant to plant (PxP) spacing is 60 cm; in a closed row system the row to row and plant to plant spacing can both be 60 cm. At least two top dressings of DAP and MoP (10:10 g) are necessary 20–25 and 40–45 days after transplanting; 1 kg per 0.05 ha of borax is also added at the time of the first top dressing. Alternatively, these two top dressings can be substituted by a mixture of cattle urine (50 ml) and water (200 ml water) per plant. The dressing with this mixture can begin 20–25 days after transplanting, and is repeated every 10–12 days.

4.4 Costs and inputs needed for establishment

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour Construction of the polyhouse persons/unit 5.0 4.0 20.0 100.0
Labour Training, pruning, stalking persons/unit 5.0 4.0 20.0 100.0
Plant material Seed, fertilizer, crop protection unit 1.0 10.0 10.0 50.0
Construction material Bamboo pole, plastics sheet, rope, nails, seed, poles unit 1.0 90.0 90.0 35.0
Total costs for establishment of the Technology 140.0
Total costs for establishment of the Technology in USD 140.0

4.5 Maintenance/ recurrent activities

Activity Timing/ frequency
1. There are no major maintenance costs during the cropping season; but occasionally some minor maintenance is required (e.g., replacing damaged stakes and plastic sheet, or securing with additional rope and nails).

4.6 Costs and inputs needed for maintenance/ recurrent activities (per year)

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour Maintenance persons/unit 1.0 5.0 5.0 100.0
Equipment Equipment unit 1.0 5.0 5.0 100.0
Fertilizers and biocides Agricultural unit 1.0 5.0 5.0 100.0
Construction material Material unit 1.0 10.0 10.0 100.0
Total costs for maintenance of the Technology 25.0
Total costs for maintenance of the Technology in USD 25.0

4.7 Most important factors affecting the costs

Describe the most determinate factors affecting the costs:

All costs and amounts are rough estimates by the technicians and authors. Exchange rate USD 1 = NPR 71 in April 2011

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Specifications/ comments on rainfall:

Annual rainfall: Also 1000-1500 mm and 1500-2000 mm

Agro-climatic zone
  • humid

Thermal climate class: subtropics

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
Comments and further specifications on topography:

Slopes on average: Also moderate (6-10%), rolling (11-15%) and hilly (16-30%)

Landforms: Also footslopes

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • medium (loamy, silty)
Topsoil organic matter:
  • high (>3%)
  • medium (1-3%)
If available, attach full soil description or specify the available information, e.g. soil type, soil PH/ acidity, Cation Exchange Capacity, nitrogen, salinity etc.

Soil fertility is medium - high

Soil water storage capacity is medium - high

5.6 Characteristics of land users applying the Technology

Market orientation of production system:
  • commercial/ market
Off-farm income:
  • less than 10% of all income
Relative level of wealth:
  • average
Individuals or groups:
  • individual/ household
Level of mechanization:
  • manual work
  • animal traction

5.7 Average area of land used by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • individual, not titled
  • individual, titled
Land use rights:
  • individual
Water use rights:
  • communal (organized)

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

risk of production failure

increased
decreased

product diversity

decreased
increased
Income and costs

farm income

decreased
increased

diversity of income sources

decreased
increased

workload

increased
decreased
Other socio-economic impacts

Initial cost

high
low

Technical knowhow

necessary
unnecessary

Socio-cultural impacts

food security/ self-sufficiency

reduced
improved
Comments/ specify:

Improved food security and reduced need for either seasonal migration or outside help

situation of socially and economically disadvantaged groups

worsened
improved

livelihood and human well-being

reduced
improved

Ecological impacts

Soil

soil loss

increased
decreased
Biodiversity: vegetation, animals

pest/ disease control

decreased
increased
Comments/ specify:

Can be susceptible to some fungal diseases

Climate and disaster risk reduction

drought impacts

increased
decreased

impacts of cyclones, rain storms

increased
decreased

6.2 Off-site impacts the Technology has shown

Areas downstream benefit from soil retention

reduced
improved

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Gradual climate change

Gradual climate change
Season increase or decrease How does the Technology cope with it?
annual temperature increase not well

Climate-related extremes (disasters)

Meteorological disasters
How does the Technology cope with it?
local rainstorm well

Other climate-related consequences

Other climate-related consequences
How does the Technology cope with it?
High relative humidity not well
Comments:

optimize the plant density; train and prune plants often to avoid overcrowding; modify the structure to provide more ventilation (ventilated polyhouse) in especially hot areas

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

positive

Long-term returns:

positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

positive

Long-term returns:

positive

6.5 Adoption of the Technology

Comments:

There is a moderate trend towards spontaneous adoption of the Technology

Comments on adoption trend: Although the technology is only moderately expensive to implement and provides a higher rate of return than traditional crops, smallholder farmers often need technical support and encouragement to get started. This support can be in the form of improved seed varieties and plastic sheeting for the polyhouse.

Driver for adoption:
• relatively simple technology
• higher economic return
• provides on-farm employment
Constraints
• smallholder farmers and poorer households need initial support to establish the polyhouse
• farmers need technical support
• farmers need practical information and technical backstopping

6.7 Strengths/ advantages/ opportunities of the Technology

Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
Cost effective in terms of output as compared to traditional crops

How can they be sustained / enhanced? Identify other cash crops that can also provide improved income opportunities
This technology can be integrated to make maximum use of farm niches; it is especially beneficial for smallholder farmers

How can they be sustained / enhanced? Provide training on the construction of polyhouses to experienced lead farmers so that they can provide technical support to others.
It mostly uses local materials

How can they be sustained / enhanced? Ensure bamboo poles are available on the farm; encourage the use of silpaulin which is more durable than polyethylene
Uses local expertise, farmer knowledge, and practices

How can they be sustained / enhanced? Farmers can make the most of their investment by linking with markets and by providing support for value chain development.

6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them

Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view How can they be overcome?
Need to provide training and technical know-how and need on-farm research to identify alternative cash crops Farmer-to-famer extension can help to identify other crops
Vulnerable to diseases and pests Adjust planting time to local conditions; build the polyhouses in appropriate locations; plant resistant varieties; modify the structure to improve air circulation; prune and train plants throughout the cropping season; improve staking techniques; rotate crops or move polyhouse every three years
Some initial set-up cost Silpaulin can be purchased at lower cost when farmers' groups buy in bulk.

7. References and links

7.1 Methods/ sources of information

7.2 References to available publications

Title, author, year, ISBN:

Construction of polyhouse and rainy season tomato cultivation inside polyhouse (in Nepali). Kathmandu, Nepal: Sustainable Soil Management Programme, Helvetas Nepal, SSMP (2010)

Links and modules

Expand all Collapse all

Modules