Vous utilisez probablement une version dépassée et inactive de ce dossier. Passez à la dernière version de ce dossier.
Technologies
Inactif

Stone Check Walls and Check Dams for Soil and Water Conservation [Inde]

technologies_5210 - Inde

État complet : 92%

1. Informations générales

1.2 Coordonnées des personnes-ressources et des institutions impliquées dans l'évaluation et la documentation de la Technologie

Personne(s)-ressource(s) clé(s)

exploitant des terres:

Jagdamba Joshi

Nakina Village

Inde

Nom du projet qui a facilité la documentation/ l'évaluation de la Technologie (si pertinent)
Book project: where people and their land are safer - A Compendium of Good Practices in Disaster Risk Reduction (DRR) (where people and their land are safer)
Nom du ou des institutions qui ont facilité la documentation/ l'évaluation de la Technologie (si pertinent)
ICIMOD International Centre for Integrated Mountain Development (ICIMOD) - Népal
Nom du ou des institutions qui ont facilité la documentation/ l'évaluation de la Technologie (si pertinent)
G.B. Pant Institute of Himalayan Einvironment & Development (G.B. Pant Institute of Himalayan Einvironment & Development) - Inde

1.3 Conditions relatives à l'utilisation par WOCAT des données documentées

Le compilateur et la(les) personne(s) ressource(s) acceptent les conditions relatives à l'utilisation par WOCAT des données documentées:

Oui

1.4 Déclaration sur la durabilité de la Technologie décrite

Est-ce que la Technologie décrite ici pose problème par rapport à la dégradation des terres, de telle sorte qu'elle ne peut pas être déclarée comme étant une technologie de gestion durable des terres?

Non

1.5 Référence au(x) Questionnaires sur les Approches de GDT (documentées au moyen de WOCAT)

2. Description de la Technologie de GDT

2.1 Courte description de la Technologie

Définition de la Technologie:

Stone Check Dams/Walls, Retainment Walls, and a Water Diversion Wall has been constructed in Nakina Village and Nakina Community Forest to help protect their settlements, agriculture land, forest land, and preserve the hilly landscape. These structures serve to reduce the runoff velocity (lowering the rate of erosion and gullying in steep slope channels) and increase infiltration for groundwater recharge.

2.2 Description détaillée de la Technologie

Description:

1. The technology is found in both natural and human environments (forest and settlement areas)

2. Main Characteristics: A check dam or check wall is constructed in a loose or active gully or a rill (shallow channel) that threatens to enlarge, or anywhere on a slope where there is a danger of scour from running water. The structures lower the velocity of flow. In Nakina porous check walls, check dams, and retainment walls were made out of stone gathered from the surrounding area. A porous check dam releases a portion of flow through the structure, decreases the head of flow over the spillway, and decreases the dynamic and hydrostatic forces against the check dam. Porous check dams are simple and more economical for construction.

Once stones are collected they are cut into suitable sizes and surfaces ( "dressing" of stones). The site where the technology is to be constructed is then cleared and, for check dams, the sides are sloped 1:1 (this simply refers to the ratio of the rise and run of the slope, so 1:1 means you'll have a 45 degree slope for your excavation). This is also known as the angle of repose, where the granular material of the embankment will be stable and not slump from its own weight. The base of the dam should be around 70 cm thick if it is 1 meter high. The bed of gully is excavated for foundation and dry stones are packed from that level.

3. Purposes/functions: Interrupts the flow of water and flattens the gradient of a channel, thereby reducing the velocity and inducing infiltration rather than eroding the channel. These structures not only slow flow velocity but also to distribute flows across vegetation. Despite some sedimentation resulting behind the dam, small cracks and porous spaces in the holes of the stones allow some sediment to flow through and the finer particles fill the gaps and strengthen the structure. Check dams can also be designed to create small reservoirs.

4. Major activities include identifying the appropriate site of installation, collection of construction materials, technical planning of the structure dimensions and design, manual labor, and maintenance.

5. Benefits/impacts: These structures decelerate runoff and accelerates groundwater recharging by storing water and facilitating infiltration of water into the soil

6. Like/Dislike:
Advantages
•Inexpensive and relatively easy to install given local building materials and labor availability
•Reduce velocity, prevent gully erosion and cause a high proportion of the sediment load in runoff to settle out, preventing downstream damage
•When carefully located and designed, check dams can remain as permanent installations with very minor regrading

Disadvantages
•Many of these structures have a temporary nature, and need to reconstructed or removed after significant damage
•Removal or reconstruction may be a significant cost depending on the size and design
•May kill grass linings in channels if the water level remains high after rainstorms or if there is significant sedimentation.
•May create turbulence which erodes the channel banks.
•Clogging by organic material may be a problem and hinder the structure's function

2.3 Photos de la Technologie

2.5 Pays/ région/ lieux où la Technologie a été appliquée et qui sont couverts par cette évaluation

Pays:

Inde

Région/ Etat/ Province:

Uttarakhand

Autres spécifications du lieu:

Nakina Village, Pithoragarh Bloc

Spécifiez la diffusion de la Technologie:
  • appliquée en des points spécifiques ou concentrée sur une petite surface
Est-ce que les sites dans lesquels la Technologie est appliquée sont situés dans des zones protégées en permanence?

Oui

Si oui, veuillez préciser:

5 check dams are located in the protected forest of Nakina. The other structures are located in the village settlement (the 5 check walls are within the ravine) or just above the Bhind Spring (Naula).

2.6 Date de mise en œuvre de la Technologie

Si l'année précise est inconnue, indiquez la date approximative: :
  • il y a plus de 50 ans (technologie traditionnelle)

2.7 Introduction de la Technologie

Spécifiez comment la Technologie a été introduite: :
  • grâce à l'innovation d'exploitants des terres
  • dans le cadre d'un système traditionnel (> 50 ans)
  • par le biais de projets/ d'interventions extérieures
Commentaires (type de projet, etc.) :

Check dams and other retainment structures are technologies that have been used for centuries. Some of the structures in the village are nearly +50 years old and have either been constructed with the help of the government (ravine check dams in settlement and above Bhind Naula) and others have been more recently constructed by the villagers themselves to support the forest landscape, specifically springshed recharge.

3. Classification de la Technologie de GDT

3.1 Principal(aux) objectif(s) de la Technologie

  • réduire, prévenir, restaurer les terres dégradées
  • préserver l'écosystème
  • protéger un bassin versant/ des zones situées en aval - en combinaison avec d'autres technologies
  • réduire les risques de catastrophes
  • s'adapter au changement et aux extrêmes climatiques et à leurs impacts

3.2 Type(s) actuel(s) d'utilisation des terres, là où la Technologie est appliquée

Forêts/ bois

Forêts/ bois

  • Forêts (semi-)naturelles/ bois
Forêts (semi-)naturelles/ terres boisées: précisez le mode de gestion:
  • Coupes sélectives
Type de forêts (semi)-naturelles:
  • végétation naturelle des forêts sèches subtropicales
  • quercus leucotrichophora (Banj oak)
Est-ce que les espèces d’arbres précisées ci-dessus sont des espèces d'arbre arbres à feuilles caduques ou à feuilles persistantes ?
  • forêt de feuillus
Produits et services:
  • Bois d'œuvre (de construction)
  • Bois de chauffage
  • Pâturage/ broutage
  • Conservation/ protection de la nature
Implantations, infrastructures

Implantations, infrastructures

  • Habitats, buildings

3.3 Est-ce que l’utilisation des terres a changé en raison de la mise en œuvre de la Technologie ?

Est-ce que l’utilisation des terres a changé en raison de la mise en œuvre de la Technologie ?
  • Non (Passez à la question 3.4)

3.4 Approvisionnement en eau

Approvisionnement en eau des terres sur lesquelles est appliquée la Technologie:
  • pluvial

3.5 Groupe de GDT auquel appartient la Technologie

  • mesures en travers de la pente
  • dérivation et drainage de l'eau
  • gestion des eaux de surface (sources, rivières, lacs, mers)

3.6 Mesures de GDT constituant la Technologie

structures physiques

structures physiques

  • S3: Fossés étagés, canaux, voies d'eau
  • S6: Murs, barrières, palissades, clôtures

3.7 Principaux types de dégradation des terres traités par la Technologie

érosion hydrique des sols

érosion hydrique des sols

  • Wt: perte de la couche superficielle des sols (couche arable)/ érosion de surface
  • Wg: ravinement/ érosion en ravines
  • Wm: mouvements de masse/ glissements de terrain
  • Wr: érosion des berges
  • Wo: effets hors-site de la dégradation
dégradation physique des sols

dégradation physique des sols

  • Ps: affaissement des sols organiques, tassement des sols
dégradation biologique

dégradation biologique

  • Bc: réduction de la couverture végétale
  • Bq: baisse de la quantité/ biomasse
dégradation hydrique

dégradation hydrique

  • Hg: changement du niveau des nappes phréatiques (eaux souterraines) et des aquifères

3.8 Prévention, réduction de la dégradation ou réhabilitation des terres dégradées

Spécifiez l'objectif de la Technologie au regard de la dégradation des terres:
  • prévenir la dégradation des terres
  • réduire la dégradation des terres

4. Spécifications techniques, activités, intrants et coûts de mise en œuvre

4.1 Dessin technique de la Technologie

Auteur:

Jaclyn Bandy

Date:

02/08/2019

Auteur:

Jaclyn Bandy

Date:

02/08/2019

Auteur:

Jaclyn Bandy

Date:

02/08/2019

Auteur:

Jaclyn Bandy

Date:

02/08/2019

4.2 Informations générales sur le calcul des intrants et des coûts

Spécifiez la manière dont les coûts et les intrants ont été calculés:
  • par entité de la Technologie
Précisez l'unité:

1. Small Check Dams 2. Large Check Walls 3. Water Diversion Wall 4. Bhind Check Walls/Retainment wall

Précisez les dimensions de l'unité de terrain (le cas échéant):

1. 5 units (3.5m x 1.5m x 0.9m) 2. 5 units (8m x 1m x 2.7m) 3. 1 unit (115m x 0.65 x 0.95m) 4. 1 unit (100m x 1m x 1.5m)

autre/ monnaie nationale (précisez):

INR

Indiquez le taux de change des USD en devise locale, le cas échéant (p.ex. 1 USD = 79.9 réal brésilien): 1 USD = :

70,0

Indiquez le coût salarial moyen de la main d'œuvre par jour:

400 INR per head/day

4.3 Activités de mise en place/ d'établissement

Activité Calendrier des activités (saisonnier)
1. Nakina village built a long water diversion wall over +50 years ago that serves as a water channel, directing runoff away from settlements and towards the ravine Pre-monsoon /dry season
2. Within the ravine/gully in Nakina Village, there is a series of 5 large check walls that were established with the help of the Forest Department Pre-monsoon /dry season
3. There is a series of check walls/check dams in another gully that were established in 1952 above the Bhind Spring/Naula (on the opposite side of the village) to protect it and decrease runoff/further erosion Pre-monsoon/dry season
4. In December 2017 the Nakina Van Panchayat (community forest council) decided to construct 5 new check dams within the Nakina Forest, which lie in the upper catchment area of the Bhind Spring Pre-monsoon/dry season
5. For the establishment of all these structures, the community and technical assistants assessed the topography of the area, size of the gully, catchment area and runoff rate before establishing the check-dam. Pre-monsoon/dry season
6. The sites were selected and prepared by removing debris and other unsuitable material which would interfere with proper placement of the check dam/wall materials. Pre-monsoon/dry season

4.4 Coûts et intrants nécessaires à la mise en place

Spécifiez les intrants Unité Quantité Coûts par unité Coût total par intrant % des coût supporté par les exploitants des terres
Main d'œuvre Large Water Diversion Wall person-days 60,0 400,0 24000,0 20,0
Main d'œuvre 5 Large Check Walls person-days 50,0 400,0 20000,0 20,0
Main d'œuvre Bhind Spring Check Walls/Retainment Wall person-days 19,0 400,0 7600,0 50,0
Main d'œuvre 5 Small Check Walls in Forest person-days 10,0 400,0 4000,0 100,0
Equipements Crate Wire (15m x 2m x 2m) Cum 60,0 75,0 4500,0
Equipements Pick pieces 15,0 300,0 4500,0 100,0
Equipements Shovel pieces 20,0 500,0 10000,0 100,0
Equipements pharuwa (hoe) pieces 15,0 300,0 4500,0 100,0
Equipements khanti (digging bar) pieces 10,0 1500,0 15000,0 100,0
Equipements hammer (5kg) pieces 10,0 2000,0 20000,0 100,0
Equipements chino (chisel) pieces 10,0 500,0 5000,0 100,0
Equipements khukuri (knife) pieces 10,0 250,0 2500,0 100,0
Matériel végétal small hammer (0.5-1 kg) pieces 15,0 300,0 4500,0 100,0
Matériaux de construction Rocks of various size and shape collected/excavated on site
Matériaux de construction Small Check Walls in Forest (5) cum 23,625 200,0 4725,0 100,0
Matériaux de construction Large Check Walls (5) cum 108,0 200,0 21600,0 20,0
Matériaux de construction Large Water Diversion Wall (1) cum 71,0 200,0 14200,0 100,0
Matériaux de construction Bhind Check Walls/Retainment Wall (5) cum 150,0 200,0 30000,0 50,0
Autre Rocks of various size and shape collected/excavated on site
Coût total de mise en place de la Technologie 196625,0
Coût total de mise en place de la Technologie en dollars américains (USD) 2808,93
Si le coût n'est pas pris en charge à 100% par l'exploitant des terres, indiquez qui a financé le coût restant:

Uttarakhand Forest Department (Government), JICA (Japan International Cooperation Agency)

Commentaires:

Cost Estimate: 200 INR/cum
Example:
1. Small Check Dams: 5 units (3.5m x 1.5m x 0.9m) ----- 4.725 cum x 200 INR = 945 INR/unit
945 INR/unit x 5 units = 4,725 Rs
or...
(4.725 cum/unit x 5 unit = 23.625 total cum )
(23.625 total cum x 200 INR = 4,725 Rs.)

2. Large Check Walls: 5 units (8m x 1m x 2.7m) -----21.6 x 200 = 4320
4320 cum x 5 units = 21,600 Rs

3. Water Diversion Wall: 1 unit (115m x 0.65 x 0.95m) ------71 x 200= 14,200
14,200 X 1 unit= 14,200 Rs

3. Bhind Spring Check Walls/Retainment Wall: 1 unit (100m x 1m x 1.5m) = 150 total cum
150 x 200 INR = 30,000 INR Total

4.5 Activités d'entretien/ récurrentes

Activité Calendrier/ fréquence
1. Inspection of the check dam for rock displacement and erosion around the ends of the dam after each significant rainfall event Monsoon/ weekly
2. Sediment accumulation is removed if it reaches a depth of ½ the original dam height Pre-monsoon/Monsoon
3. Sometimes check dams are removed when their useful life is completed Annual inspections

4.6 Coûts et intrants nécessaires aux activités d'entretien/ récurrentes (par an)

Spécifiez les intrants Unité Quantité Coûts par unité Coût total par intrant % des coût supporté par les exploitants des terres
Main d'œuvre Reconstruction of damaged check dams person-days/unit 10,0 400,0 4000,0 100,0
Main d'œuvre Removal of sediment person-days/unit 5,0 400,0 2000,0 100,0
Equipements pick pieces 3,0 70,0 210,0 100,0
Equipements shovel pieces 3,0 42,0 126,0 100,0
Equipements pharuwa (hoe) pieces 2,0 52,0 104,0 100,0
Equipements khanti (digging bar) pieces 2,0 30,0 60,0 100,0
Equipements hammer pieces 3,0 25,0 75,0 100,0
Equipements chino (chisel) pieces 2,0 75,0 150,0 100,0
Equipements khukuri (knife) pieces 2,0 22,0 44,0 100,0
Equipements small hammer (0.5-1kg) pieces 3,0 120,0 360,0 100,0
Matériaux de construction Stones available at site locally
Coût total d'entretien de la Technologie 7129,0
Coût total d'entretien de la Technologie en dollars américains (USD) 101,84

4.7 Facteurs les plus importants affectant les coûts

Décrivez les facteurs les plus importants affectant les coûts :

Size of the check dam/check wall
Frequency and intensity of the damage to the structures
Labor availability

5. Environnement naturel et humain

5.1 Climat

Précipitations annuelles
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1000 mm
  • 1001-1500 mm
  • 1501-2000 mm
  • 2001-3000 mm
  • 3001-4000 mm
  • > 4000 mm
Spécifiez la pluviométrie moyenne annuelle (si connue), en mm:

1500,00

Spécifications/ commentaires sur les précipitations:

Monsoon- mid-June to mid-September; July and August are the rainiest months and the temperature is warm and moist; between 70-85% of the annual precipitation occurs in the monsoon season

Seasons
a. Winter or Cold weather (mid Dec. - mid March)
b. Summer or hot weather (mid March - mid June)
c. Season of general rains (South - West monsoon season)
d. Season of retreating monsoon (mid September to mid November)

Indiquez le nom de la station météorologique de référence considérée:

India Meteorological Department, Meteorological Centre Dehradun

Zone agro-climatique
  • subhumide

The overall climatic condition in the Pithoragarh district is governed by the southwest monsoon. It has a sub-tropical to temperate climate, with three pronounced seasons; summer, winter, and monsoon. The hilly terrain of the Himalayan region has snow cover and is cold during winter with snowfall normally occurring during the months of December to March.

Temperature- The temperature ranges from 0°C to 10°C in winter and from 8°C to 33°C in summer season. However, there is no meteorological observatory in the district. The account of the climate is based mainly on the records of the observations in the neighboring districts where similar meteorological conditions prevail. Variations in temperature are considerable from place to place and depend upon elevation as well as aspect. As the insolation is intense at high altitudes, in summer temperatures are considerably higher in the open than in the shade.

5.2 Topographie

Pentes moyennes:
  • plat (0-2 %)
  • faible (3-5%)
  • modéré (6-10%)
  • onduleux (11-15%)
  • vallonné (16-30%)
  • raide (31-60%)
  • très raide (>60%)
Reliefs:
  • plateaux/ plaines
  • crêtes
  • flancs/ pentes de montagne
  • flancs/ pentes de colline
  • piémonts/ glacis (bas de pente)
  • fonds de vallée/bas-fonds
Zones altitudinales:
  • 0-100 m
  • 101-500 m
  • 501-1000 m
  • 1001-1500 m
  • 1501-2000 m
  • 2001-2500 m
  • 2501-3000 m
  • 3001-4000 m
  • > 4000 m
Indiquez si la Technologie est spécifiquement appliquée dans des:
  • situations concaves
Commentaires et précisions supplémentaires sur la topographie:

Altitude of evaluated sites: 1800-1990m
Average Slope: 25-+30%

5.3 Sols

Profondeur moyenne du sol:
  • très superficiel (0-20 cm)
  • superficiel (21-50 cm)
  • modérément profond (51-80 cm)
  • profond (81-120 cm)
  • très profond (>120 cm)
Texture du sol (de la couche arable):
  • grossier/ léger (sablonneux)
  • moyen (limoneux)
Texture du sol (> 20 cm sous la surface):
  • moyen (limoneux)
Matière organique de la couche arable:
  • moyen (1-3%)
  • faible (<1%)
Si disponible, joignez une description complète du sol ou précisez les informations disponibles, par ex., type de sol, pH/ acidité du sol, capacité d'échange cationique, azote, salinité, etc.

Mountain/hill soils are a collective name given to various types of soils found under the following conditions :
-under sub-tropical, temperate and sub-alpine conditions
-under various forest types

Characteristics: very thin, fertile, and may be less than a centimeter deep on steep slopes; they are mixed with pebbles, shingles (a mass of small rounded pebbles), and gravels; they have a low-medium water holding capacity. Angular and subangular fragments of parent rock may be found mixed with the lower layers of the mountain and hill soils.

Texture: varies from loamy to sandy loam.
Soil Reaction: ranges from acidic to neutral (pH 4.6 to 6.5)
Organic Matter content: 1-5%

Ferrugenous red roils are found in this district and are well developed over Himalayan rocks (quartzite, biotite schist, amphibolite schist). They are free of carbonates and deficient in nitrogen, humus and phosphorus, light textured, porous, and friable (brittle/crumbly). The soil depth ranges from about 10cm-75 cm. These soils may be grouped into two on basis of morphology

1. Red earths- loose, friable topsoil rich in secondary concretions (hard, compact mass of matter formed by the precipitation of mineral cement within the spaces between particles, and is found in sedimentary rock or soil)
2. Red loam- argillaceous soils having a blocky structure (argillaceous minerals may appear silvery upon optical reflection and are minerals containing substantial amounts of clay-like components, e.g. argillaceous limestones are limestones consisting predominantly of calcium carbonate, but including 10-40% of clay minerals)

Brown soil: is found particularly under dense broadleaved temperate and sub-alpine forests. There occurs a thick layer of humus on the forest floor (made of decomposed leaves, branches, twigs) and the topsoil is extremely rich in humus

Podsolic Soil: soil that has developed in humid/temperate conditions usually under coniferous forests (e.g. deodar, blue pine, fir, spruce) over quartzite, granites, schists and gneiss.

Citation: Kumaun: The Land and the People, Sharad Singh Negi (1993)

5.4 Disponibilité et qualité de l'eau

Profondeur estimée de l’eau dans le sol:

> 50 m

Disponibilité de l’eau de surface:

moyenne

Qualité de l’eau (non traitée):

eau potable

La qualité de l'eau fait référence à:

eaux souterraines

La salinité de l'eau est-elle un problème? :

Non

La zone est-elle inondée?

Non

Commentaires et précisions supplémentaires sur la qualité et la quantité d'eau:

Quantity: Water crisis has been a perennial problem in both the rural and urban areas of the Pithoragarh district
There is scarcity of safe drinking water of the villages in the study area. Hand pumps are often not functioning, pipe-water schemes are unreliable and the spring discharges have reduced during the dry season. Hand-pumped water often has a high iron content and bitter taste. Poor quality of groundwater in some of the naulas is mainly due to misuse and/or disuse of the structures.

A block-district groundwater resource estimation could not be carried out as the area is hilly (with slope >20%) and in major part aquifers are small, isolated bodies, and groundwater abstraction is done mainly through hand pumps and springs with small discharges.

However, we collected some physicochemical parameters that indicate the water (sourced from springs) is of good quality:

Water Quality Parameters of Springs:
pH: 6.29-8.18
Temp: 19.0-23.5 ºC
Electrical Conductivity: 109-504 µmsiemens
Total Dissolved Solids: 75-385 ppm

Other Parameters (from springs of nearby district, Champawat)
Electrical Conductivity: 127-222 µmsiemens
pH: 7.69-8.24
Calcium: 16-36 mg/l
Magnesium: 4.9-7.3 mg/l
Bicarbonate: 61-134 mg/l
Chloride: 5.3- 8.9 mg/l
Total Hardness as CaCO3: 70-110 mg/l

Source: Government of India Ministry of Water Resources, Central Ground Water Board, 2009 Groundwater Brochure of Champawat District (2009)

5.5 Biodiversité

Diversité des espèces:
  • moyenne
Diversité des habitats:
  • moyenne
Commentaires et précisions supplémentaires sur la biodiversité:

Uttarakhand has more than 7000 species of medicinal plants and 500 species of fauna. Floral diversity contributes 31% of total floral density of India. Fauna contributes just 1.58% of the total faunal density of the country. There are 119 endemic species of flowering plants in the state that exhibited 2.35% endemism and 35 faunal endemic species. Because it lies at the juncture of India, Nepal and the Tibeten Autononmous region, there often cases of poaching and smuggling of wildlife contrabands, including bear bile, musk pods and leopard skins through the borders. Yarsa Gumba Ophiocordyceps sinensis, commonly known as Caterpillar Fungus, is also illegally traded transboundary in the region, together with various plant species. Due to anthropogenic impacts, changes is soil quality, and climatic elements, the biodiversity of our study site is not as high as in other areas of the Pithoragarh district.

Citation: Sundriyal, M. & Sharma, B. (2016). Status of Biodiversity in Central Himalaya, Applied Ecology and Environmental Sciences, 4( 2), 37-43.

5.6 Caractéristiques des exploitants des terres appliquant la Technologie

Sédentaire ou nomade:
  • Sédentaire
Orientation du système de production:
  • subsistance (auto-approvisionnement)
  • exploitation mixte (de subsistance/ commerciale)
Revenus hors exploitation:
  • 10-50% de tous les revenus
Niveau relatif de richesse:
  • pauvre
Individus ou groupes:
  • groupe/ communauté
Niveau de mécanisation:
  • travail manuel
Genre:
  • femmes
  • hommes
Age des exploitants des terres:
  • jeunes
  • personnes d'âge moyen
  • personnes âgées
Indiquez toute autre caractéristique pertinente des exploitants des terres:

With recent development in Pithoragarh, an influx of funds coming from outside sources has caused a decline in the importance of agriculture production, which in now marginalized, based on female labour, and mainly conducted for subsistence with little surplus to sell. High caste men do not work in cultivation at all, and male tasks such as ploughing are performed by the Scheduled Caste.

Although most women are still cultivating, their work has lost economic importance. For most families, the produce does not cover the needs of the household and surplus must be bought from the market. Many of the terraces that were formerly fruit orchards (mainly citrus) have been completely abandoned. Farming is less intensive and landholdings are small and fragmented. The main crops are wheat, millet, and pulses, but yields are low as the land is not irrigated. Less livestock (cows, goats, buffalo) is kept because of the labor involved. Very little capital is returned to farming. Crops produced for the markets in the plains are replacing traditional crops to sustain the household.

With exposure to the“Modern” lifestyle, new values have also been accepted. Two children are the norm (the ideal being one son and one daughter, but at least one son in a must). Although access to education is quite good, it does not seem to result in working careers for women. The women, both young and old, spend their days with domestic and agriculture work. Several village persons stated that it would be best to educate their daughters so they could get a government job.

5.7 Superficie moyenne des terres utilisées par les exploitants des terres appliquant la Technologie

  • < 0,5 ha
  • 0,5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1 000 ha
  • 1 000-10 000 ha
  • > 10 000 ha
Cette superficie est-elle considérée comme de petite, moyenne ou grande dimension (en se référant au contexte local)?
  • petite dimension

5.8 Propriété foncière, droits d’utilisation des terres et de l'eau

Propriété foncière:
  • communauté/ village
Droits d’utilisation des terres:
  • communautaire (organisé)
Droits d’utilisation de l’eau:
  • accès libre (non organisé)
  • communautaire (organisé)
Est-ce que les droits d'utilisation des terres sont fondés sur un système juridique traditionnel?

Oui

Précisez:

Under the Kumaun Panchayat forest rules of 1931 (amended in 1976): A Van Panchayat, (community forest council), can be formed out of non-private land within the settlement boundaries of a village. Accordingly, all villagers are members of the VP upon their approval by a Sub-Divisional Magistrate under the state Revenue Department. The members are collectively referred to as the general body, which selects the management committee members through a democratic process.

Commentaires:

5-9 elected members assume control and regulation of forest resources. They additionally raise funds and mobilize the village to protect and support sustainable land use.

5.9 Accès aux services et aux infrastructures

santé:
  • pauvre
  • modéré
  • bonne
éducation:
  • pauvre
  • modéré
  • bonne
assistance technique:
  • pauvre
  • modéré
  • bonne
emploi (par ex. hors exploitation):
  • pauvre
  • modéré
  • bonne
marchés:
  • pauvre
  • modéré
  • bonne
énergie:
  • pauvre
  • modéré
  • bonne
routes et transports:
  • pauvre
  • modéré
  • bonne
eau potable et assainissement:
  • pauvre
  • modéré
  • bonne
services financiers:
  • pauvre
  • modéré
  • bonne
Commentaires:

The situation of infrastructure is difficult and inconsistent in the hill regions because of the terrain. The major infrastructural issues are drinking water and irrigation facilities, electricity, transportation and communication facilities and social infrastructure (housing and education). As for financial services, only the State Bank of India (SBI) is active in the hill regions where it is trying to achieve the objective of 100% financial inclusion. Some villages mentioned buying into into agricultural insurance in the past, however this was a temporary enterprise and they were never compensated after extreme climatic events that occurred and damaged over 70% of their crop.

Though infrastructure and education has generally improved over the years, institutional and marketing networks in the region aimed at supporting hill-farmers are lacking.

6. Impacts et conclusions

6.1 Impacts sur site que la Technologie a montrés

Impacts socio-économiques

Production

qualité des forêts/ bois

en baisse
en augmentation

gestion des terres

entravé
simplifié
Commentaires/ spécifiez:

The check dams helped deter the damage from runoff to their settlements and conserved the forest trail that is commonly used to access the areas where fodder/grass collection is permitted.

Impacts socioculturels

connaissances sur la GDT/ dégradation des terres

réduit
amélioré
Commentaires/ spécifiez:

People have seen the benefits of constructing these structures, and they continue to participate in maintaining and building more check dams to reduce erosion and increase groundwater recharge.

Impacts écologiques

Cycle de l'eau/ ruissellement

quantité d'eau

en baisse
en augmentation

récolte/ collecte de l'eau

réduit
amélioré

ruissellement de surface

en augmentation
en baisse

drainage de l'excès d'eau

réduit
amélioré

nappes phréatiques/ aquifères

en baisse
rechargé

évaporation

en augmentation
en baisse
Sols

humidité du sol

en baisse
en augmentation

couverture du sol

réduit
amélioré

perte en sol

en augmentation
en baisse

accumulation de sol

en baisse
en augmentation

encroûtement/ battance du sol

en augmentation
réduit

compaction du sol

en augmentation
réduit

cycle/ recharge des éléments nutritifs

en baisse
en augmentation
Biodiversité: végétale, animale

Couverture végétale

en baisse
en augmentation

biomasse/ au dessus du sol C

en baisse
en augmentation
Réduction des risques de catastrophe et des risques climatiques

glissements de terrains/coulées de débris

en augmentation
en baisse

impacts de la sécheresse

en augmentation
en baisse

impacts des cyclones, pluies torrentielles

en augmentation
en baisse

risques d'incendies

en augmentation
en baisse

microclimat

détérioré
amélioré

6.2 Impacts hors site que la Technologie a montrés

disponibilité de l'eau

en baisse
en augmentation

flux des cours d'eau fiables et stables en saison sèche

réduit
en augmentation

envasement en aval

en augmentation
en baisse

capacité tampon/de filtration

réduit
amélioré

dommages sur les champs voisins

en augmentation
réduit

dommages sur les infrastructures publiques/ privées

en augmentation
réduit

6.3 Exposition et sensibilité de la Technologie aux changements progressifs et aux évènements extrêmes/catastrophes liés au climat (telles que perçues par les exploitants des terres)

Changements climatiques progressifs

Changements climatiques progressifs
Saison Augmentation ou diminution Comment la Technologie fait-elle face à cela?
températures annuelles augmente bien
autre changement climatique progressif Irregular rainfall augmente bien

Extrêmes climatiques (catastrophes)

Catastrophes météorologiques
Comment la Technologie fait-elle face à cela?
pluie torrentielle locale bien
Catastrophes climatiques
Comment la Technologie fait-elle face à cela?
sécheresse bien
feu de forêt bien
Catastrophes hydrologiques
Comment la Technologie fait-elle face à cela?
crue éclair bien
glissement de terrain modérément
Commentaires:

Some check dams and check walls are more durable than others. Depending on the site specific conditions, some do very well after incidences such as after an extreme rainstorm. However this depends on the design/structural soundness, the level of maintenance, and overall hydrological impact. For example, the large check walls in the ravine of Nakina have required immense reconstruction and have required significant effort to maintain, as they receive a huge amount of flow during monsoon each year. The size and slope of the gully are impactful determinants for how sensitive/enduring the structure is.

6.4 Analyse coûts-bénéfices

Quels sont les bénéfices comparativement aux coûts de mise en place (du point de vue des exploitants des terres)?
Rentabilité à court terme:

positive

Rentabilité à long terme:

très positive

Quels sont les bénéfices comparativement aux coûts d'entretien récurrents (du point de vue des exploitants des terres)?
Rentabilité à court terme:

positive

Rentabilité à long terme:

positive

Commentaires:

Although maintenance can be troublesome and require lots of manual labor for repair, the long term benefits and avoided damage from monsoon runoff outweigh the costs/effort.

6.5 Adoption de la Technologie

  • > 50%
De tous ceux qui ont adopté la Technologie, combien d'entre eux l'ont fait spontanément, à savoir sans recevoir aucune incitation matérielle, ou aucune rémunération? :
  • 11-50%
Commentaires:

In many cases, collective action is encountered at all stages for these technologies, from planning and construction, to demolition of temporary check-dams without any technical or financial backing from the state.

6.6 Adaptation

La Technologie a-t-elle été récemment modifiée pour s'adapter à l'évolution des conditions?

Non

6.7 Points forts/ avantages/ possibilités de la Technologie

Points forts/ avantages/ possibilités du point de vue de l'exploitant des terres
Decrease velocity of runoff and erosive processes to the landscape
Support recharge of groundwater/springshed recharge
Increase water availability for surrounding vegetation
Well constructed check dams function as permanent installations and require little maintenance
The technology is relatively inexpensive and easy to install
Points forts/ avantages/ possibilités du point de vue du compilateur ou d'une autre personne ressource clé
Views aligned with the land-user
There is potential for the village to construct more check dams and use the water for storage/irrigation purposes

6.8 Faiblesses/ inconvénients/ risques de la Technologie et moyens de les surmonter

Faiblesses/ inconvénients/ risques du point de vue de l’exploitant des terres Comment peuvent-ils être surmontés?
Removal and reconstruction can be costly for some types of check dams Give thorough attention to the criteria for the site selection to avoid the need for removal; stress the need for maintenance and structure check ups.
There can be turbulence downstream, causing erosion of the channel banks. Vegetative interventions can support these structures, so trees or shrubs can be planted around and in the spaces between check dams to further decrease runoff velocity, increase infiltration, and act as a shock absorber.
Faiblesses/ inconvénients/ risques du point de vue du compilateur ou d'une autre personne ressource clé Comment peuvent-ils être surmontés?
Aligned with the land user The government should consider providing appropriate incentives for constructing and managing check-dams, which enable more efficient use of water and also generate the positive externality of recharging ground water in surrounding areas.
Check dam construction, if not done by skilled labour, can fail. These situations often arise and become noticeable to the land users when check-dams located upstream are damaged and there is a rapid flow of water to check-dams located downstream. Special maintenance can be performed by designated people to monitor the status of check dams upstream
The large check dams have consistent issues and appear to require more reconstruction. These structures are located downstream and must bear more pressure. The reason for their damage could be inconsistency in repairing existing damage before monsoon. Construction cost is then increased, as additional cost is incurred in removing the accumulated silt and arranging new boulders. The land users should organize themselves more formally for check dam reconstruction is this area. Collectively generating the necessary capital and labor needed for timely reconstruction may be required from external sources like the Forest Department or JICA organization.

7. Références et liens

7.1 Méthodes/ sources d'information

  • visites de terrain, enquêtes sur le terrain

4

  • interviews/entretiens avec les exploitants des terres

2

Quand les données ont-elles été compilées (sur le terrain)?

26/06/2019

7.2 Références des publications disponibles

Titre, auteur, année, ISBN:

Evaluation of the effect of porous check dam location on fine sediment retention (a case study), A. M. Hassanli, A. Esmaeli Nameghi, S. Beecham, 2007.

Disponible à partir d'où? Coût?

DOI 10.1007/s10661-008-0318-2

7.3 Liens vers les informations pertinentes en ligne

Titre/ description:

Mainstreaming Slope Stability Management

URL:

http://www.research4cap.org/Library/ScottWilson-LaoPDR-2009-Slopes+Theme8.5+6+Retaining+Wall+Design+PPT+E-SEACAP21-v111220.pdf

Modules