A Water-Energy-Food (WEF) efficient net house [Emirats arabes unis]
- Création :
- Mise à jour :
- Compilateur : Joren Verbist
- Rédacteur : –
- Examinateurs : William Critchley, Rima Mekdaschi Studer
technologies_7303 - Emirats arabes unis
Voir les sections
Développer tout Réduire tout1. Informations générales
1.2 Coordonnées des personnes-ressources et des institutions impliquées dans l'évaluation et la documentation de la Technologie
Personne(s)-ressource(s) clé(s)
Activities Coordinator Officer:
Nejatian Arash
Emirats arabes unis
Regional Coordinator APRP:
Aziz Niane Abdoul
International Center of Agriculture Research in the Dry Areas (ICARDA)
Emirats arabes unis
Research Team Leader - Soils, Waters and Agronomy:
Nangia Vinay
International Center of Agriculture Research in the Dry Areas (ICARDA)
Maroc
Nom du projet qui a facilité la documentation/ l'évaluation de la Technologie (si pertinent)
ICARDA Institutional Knowledge Management InitiativeNom du ou des institutions qui ont facilité la documentation/ l'évaluation de la Technologie (si pertinent)
International Center for Agricultural Research in the Dry Areas (ICARDA) - Liban1.3 Conditions relatives à l'utilisation par WOCAT des données documentées
Le compilateur et la(les) personne(s) ressource(s) acceptent les conditions relatives à l'utilisation par WOCAT des données documentées:
Oui
1.4 Déclaration sur la durabilité de la Technologie décrite
Est-ce que la Technologie décrite ici pose problème par rapport à la dégradation des terres, de telle sorte qu'elle ne peut pas être déclarée comme étant une technologie de gestion durable des terres?
Non
2. Description de la Technologie de GDT
2.1 Courte description de la Technologie
Définition de la Technologie:
The technology integrates off-grid soil-less cultivation within a net house, utilizing solar-powered root zone cooling and ultra-low energy irrigation, thus significantly enhancing water and energy efficiency for sustainable agriculture in arid regions. This innovation is a key contribution within the Water-Energy-Food Nexus, addressing the unique challenges of food production in the Middle East.
2.2 Description détaillée de la Technologie
Description:
Achieving food production and food security in the Middle East is challenging due to the region's arid climate. Net houses and greenhouses offer potential solutions by improving water efficiency and providing better climate control. However, traditional greenhouses require substantial water and energy inputs. This challenge is directly linked to the Water-Energy-Food (WEF) Nexus, which offers integrated solutions to these interconnected needs.
In 2022, the International Center for Agricultural Research in the Dry Areas (ICARDA) began experimenting with various greenhouse models in the United Arab Emirates (UAE) to develop an optimal WEF solution. The outcome of these experiments is a water- and energy-efficient “net house” with several advantages.
One major issue with conventional greenhouses is their high water use due to the inefficiency of traditional soil bed systems. ICARDA’s research highlighted that simplified closed soil-less production systems can reduce irrigation water needs by more than 50%. These systems also offer additional benefits, including shorter cropping cycles, no risk of soil degradation or contamination, higher resource efficiency, and lower operational costs, as they eliminate the need for sterilization, soil cultivation, base fertilizers, and weed control.
Traditional greenhouses typically use pads and fans for cooling, but these systems have significant drawbacks. They are costly, require frequent maintenance and replacements, and consume a large amount of electricity. It's also noteworthy that most Gulf countries have recently increased their electricity prices. One approach to reducing cooling needs is to use a net house instead of a traditional greenhouse, combined with ventilators.
Another factor contributing to high energy consumption in traditional greenhouses is the use of conventional drip irrigation systems. In collaboration with the Massachusetts Institute of Technology (MIT), ICARDA researched energy-efficient drip irrigation systems, leading to the development of Ultra Low Energy (ULE) drippers. These drippers reduce pumping energy by 80%, which in turn lowers the number of solar panels required, making the system more cost-effective.
The efficient WEF Nexus solution proposed by ICARDA comprises five key technologies:
1.Closed soil-less production system: A hydroponic system with fertigation.
2.Net house: A structure that allows airflow while protecting crops from insects and adverse weather.
3.Ultra-low pressure irrigation system
4.Root zone cooling: In soil-less systems, cooling the root zone is easier and more cost-effective through ventilation.
5.Low-cost solar energy: The rapid decline in the cost of solar panels enhances the system's affordability.
This case study focuses on irrigation and fertigation solar powered solution with a Hybrid AC/DC root zone cooling. It is hybrid, which implies that there are no batteries to keep the house running at night and when sunshine is insufficient, it takes electricity from the grid. Compared to conventional cooled greenhouses, the net house measuring 8x30 meters offer multiple benefits compared with traditional greenhouses:
•Energy savings of 80% to 90%
•Extended production periods without any reduction in yield or quality
•Significantly lower costs
•Dramatically improved water productivity
•A 14% increase in net returns and a 28% reduction in costs.
This innovation demonstrates the effectiveness and necessity of integrated Water-Energy-Food strategies and contributes to a more water, energy, and food-secure Middle East.
2.3 Photos de la Technologie
2.4 Vidéos de la Technologie
Commentaire, brève description:
https://hdl.handle.net/20.500.11766/69293
Date:
2023
Nom du vidéaste:
ICARDA
2.5 Pays/ région/ lieux où la Technologie a été appliquée et qui sont couverts par cette évaluation
Pays:
Emirats arabes unis
Spécifiez la diffusion de la Technologie:
- appliquée en des points spécifiques ou concentrée sur une petite surface
Est-ce que les sites dans lesquels la Technologie est appliquée sont situés dans des zones protégées en permanence?
Non
2.6 Date de mise en œuvre de la Technologie
Si l'année précise est inconnue, indiquez la date approximative: :
- il y a moins de 10 ans (récemment)
2.7 Introduction de la Technologie
Spécifiez comment la Technologie a été introduite: :
- grâce à l'innovation d'exploitants des terres
- au cours d'expérimentations / de recherches
- par le biais de projets/ d'interventions extérieures
Commentaires (type de projet, etc.) :
Greenhouse and net houses were already present.
3. Classification de la Technologie de GDT
3.1 Principal(aux) objectif(s) de la Technologie
- améliorer la production
- s'adapter au changement et aux extrêmes climatiques et à leurs impacts
- atténuer le changement climatique et ses impacts
- créer un impact économique positif
3.2 Type(s) actuel(s) d'utilisation des terres, là où la Technologie est appliquée
Les divers types d'utilisation des terres au sein du même unité de terrain: :
Non

Terres cultivées
- Cultures annuelles
Cultures annuelles - Précisez les cultures:
- légumes - légumes à feuilles (laitues, choux, épinards, autres)
Nombre de période de croissance par an: :
- 3
Est-ce que les cultures intercalaires sont pratiquées?
Non
Est-ce que la rotation des cultures est appliquée?
Non
3.3 Est-ce que l’utilisation des terres a changé en raison de la mise en œuvre de la Technologie ?
Est-ce que l’utilisation des terres a changé en raison de la mise en œuvre de la Technologie ?
- Non (Passez à la question 3.4)
3.4 Approvisionnement en eau
Approvisionnement en eau des terres sur lesquelles est appliquée la Technologie:
- pleine irrigation
Commentaires:
Hydroponic system
3.5 Groupe de GDT auquel appartient la Technologie
- gestion intégrée de la fertilité des sols
- gestion de l'irrigation (incl. l'approvisionnement en eau, le drainage)
- technologies d'efficacité énergétique
3.6 Mesures de GDT constituant la Technologie

pratiques agronomiques
- A7: Autres

structures physiques
- S7: Collecte de l'eau/ approvisionnent en eau/ équipement d'irrigation
- S10: Mesures d'économie d'énergie

modes de gestion
- M2: Changement du niveau de gestion / d'intensification
Commentaires:
A7: Soil-less cultivation
3.7 Principaux types de dégradation des terres traités par la Technologie

érosion hydrique des sols
- Wt: perte de la couche superficielle des sols (couche arable)/ érosion de surface

érosion éolienne des sols
- Et: perte de la couche superficielle des sols (couche arable)

dégradation chimique des sols
- Cn: baisse de la fertilité des sols et réduction du niveau de matière organique (non causée par l’érosion)
- Cp: pollution des sols
- Cs: salinisation/ alcalinisation

dégradation biologique
- Bl: perte de la vie des sols

dégradation hydrique
- Ha: aridification
- Hg: changement du niveau des nappes phréatiques (eaux souterraines) et des aquifères
Commentaires:
The net house protects soils and crops from wind and water erosion. By soil-less cultivation and rootzone cooling, less water is required hence it indirectly addresses the decline in water resources.
3.8 Prévention, réduction de la dégradation ou réhabilitation des terres dégradées
Spécifiez l'objectif de la Technologie au regard de la dégradation des terres:
- prévenir la dégradation des terres
- s'adapter à la dégradation des terres
Commentaires:
The net house is an adaptive measure to LD however, by its higher energy- and water efficiency it indirectly prevents further degradation.
4. Spécifications techniques, activités, intrants et coûts de mise en œuvre
4.1 Dessin technique de la Technologie
Spécifications techniques (associées au dessin technique):
This diagram illustrates a "24 Volt Hybrid System" for a solar-powered hydroponic production setup. It features a greenhouse (8x30 meters) where plants are grown in a semi-controlled environment. The system is powered primarily by six 300W solar panels, providing 85% of the total energy needed, while the grid supplements with an additional 25%. Key components include a 24V root zone cooling system and an automatic fertigation controller, which manages nutrient delivery to the plants. This hybrid setup highlights sustainable energy use and efficient plant care in hydroponic agriculture.
Auteur:
Arash Nejatian & Abdoul Aziz Niane
Date:
2022
Spécifications techniques (associées au dessin technique):
Schematic overview. This diagram shows a solar irrigation setup and wiring chart for a closed hydroponics system, designed for a net house of 8x30 meters with a recommended irrigation rate of 5 liters per minute and four irrigation lines. The setup is powered by a 310-330W monocrystalline solar panel connected to a 30-amp FOXSUR solar charge controller (12V/24V). The system includes two 12V, 20AH UPS/solar batteries, a 16A DC miniature circuit breaker, and a 24VAC modular contactor. An irrigation controller manages the water output at 24VAC, operating a 450W DC pump with a 1.5-inch outlet, ensuring efficient water delivery for hydroponic plant growth.ronics
Auteur:
Arash Nejatian & Abdoul Aziz Niane
Date:
2023
4.2 Informations générales sur le calcul des intrants et des coûts
Spécifiez la manière dont les coûts et les intrants ont été calculés:
- par entité de la Technologie
Précisez l'unité:
Net house
Précisez les dimensions de l'unité de terrain (le cas échéant):
8 by 30 meter
autre/ monnaie nationale (précisez):
Dirham
Indiquez le taux de change des USD en devise locale, le cas échéant (p.ex. 1 USD = 79.9 réal brésilien): 1 USD = :
3,67
4.4 Coûts et intrants nécessaires à la mise en place
Spécifiez les intrants | Unité | Quantité | Coûts par unité | Coût total par intrant | % des coût supporté par les exploitants des terres | |
---|---|---|---|---|---|---|
Autre | Net house structure | total | 1,0 | 25000,0 | 25000,0 | |
Autre | Irrigation system | total | 1,0 | 2015,0 | 2015,0 | |
Autre | Root Zone Cooling | total | 1,0 | 5000,0 | 5000,0 | |
Autre | Hydroponic system | total | 1,0 | 3000,0 | 3000,0 | |
Coût total de mise en place de la Technologie | 35015,0 | |||||
Coût total de mise en place de la Technologie en dollars américains (USD) | 9540,87 |
Si le coût n'est pas pris en charge à 100% par l'exploitant des terres, indiquez qui a financé le coût restant:
The project
Commentaires:
Cost show total cost for that specific components hence it includes aspects such as materials and installation (i.e., labour).
The hybrid AC/DC system, which uses electricity from the grid when sunlight is insufficient and shuts down at night, eliminates the need for batteries. Off-grid systems, by contrast, require at least four batteries, each priced at a minimum of $200. Additionally, the off-grid setup requires five extra solar panels, costing $150 each. As a result, the hybrid system reduces investment costs by $1,550.
4.5 Activités d'entretien/ récurrentes
Activité | Calendrier/ fréquence | |
---|---|---|
1. | Planting cucumber | September |
2. | Harvesting cucumber | May |
Commentaires:
Because of the root zone cooling the cucumber can grow for a longer period. Without root zone cooling the harvest is in April.
4.6 Coûts et intrants nécessaires aux activités d'entretien/ récurrentes (par an)
Spécifiez les intrants | Unité | Quantité | Coûts par unité | Coût total par intrant | % des coût supporté par les exploitants des terres | |
---|---|---|---|---|---|---|
Main d'œuvre | Labour | Person-Days | 2,0 | 800,0 | 1600,0 | |
Matériel végétal | Cucumber seeds | seeds | 800,0 | 0,3 | 240,0 | |
Engrais et biocides | NPK (12-12-36 + TE) | 20 kg bag | 2,0 | 200,0 | 400,0 | |
Engrais et biocides | Magnesium sulfate | 20 kg bag | 1,0 | 60,0 | 60,0 | |
Engrais et biocides | Calcium Nitrate | 20 kg bag | 2,0 | 200,0 | 400,0 | |
Engrais et biocides | Pesticides | Liter | 1,0 | 106,0 | 106,0 | |
Autre | Water | cubic meter | 40,0 | 3,13 | 125,2 | |
Autre | Energy (electricity) | kWh | 1344,0 | 0,045 | 60,48 | |
Coût total d'entretien de la Technologie | 2991,68 | |||||
Coût total d'entretien de la Technologie en dollars américains (USD) | 815,17 |
Si le coût n'est pas pris en charge à 100% par l'exploitant des terres, indiquez qui a financé le coût restant:
The project
4.7 Facteurs les plus importants affectant les coûts
Décrivez les facteurs les plus importants affectant les coûts :
The most important costs factor making this innovation more cost effective than the conventionally cooled greenhouses is energy cost and water cost. For the conventionally cooled greenhouses these costs are respectively 302 and 680.
5. Environnement naturel et humain
5.1 Climat
Précipitations annuelles
- < 250 mm
- 251-500 mm
- 501-750 mm
- 751-1000 mm
- 1001-1500 mm
- 1501-2000 mm
- 2001-3000 mm
- 3001-4000 mm
- > 4000 mm
Zone agro-climatique
- aride
5.2 Topographie
Pentes moyennes:
- plat (0-2 %)
- faible (3-5%)
- modéré (6-10%)
- onduleux (11-15%)
- vallonné (16-30%)
- raide (31-60%)
- très raide (>60%)
Reliefs:
- plateaux/ plaines
- crêtes
- flancs/ pentes de montagne
- flancs/ pentes de colline
- piémonts/ glacis (bas de pente)
- fonds de vallée/bas-fonds
Zones altitudinales:
- 0-100 m
- 101-500 m
- 501-1000 m
- 1001-1500 m
- 1501-2000 m
- 2001-2500 m
- 2501-3000 m
- 3001-4000 m
- > 4000 m
Indiquez si la Technologie est spécifiquement appliquée dans des:
- non pertinent
Commentaires et précisions supplémentaires sur la topographie:
SLM is soil less.
5.3 Sols
Profondeur moyenne du sol:
- très superficiel (0-20 cm)
- superficiel (21-50 cm)
- modérément profond (51-80 cm)
- profond (81-120 cm)
- très profond (>120 cm)
Texture du sol (de la couche arable):
- moyen (limoneux)
Texture du sol (> 20 cm sous la surface):
- moyen (limoneux)
Matière organique de la couche arable:
- faible (<1%)
5.4 Disponibilité et qualité de l'eau
Profondeur estimée de l’eau dans le sol:
> 50 m
Disponibilité de l’eau de surface:
moyenne
Qualité de l’eau (non traitée):
uniquement pour usage agricole (irrigation)
La qualité de l'eau fait référence à:
eaux souterraines
La salinité de l'eau est-elle un problème? :
Oui
La zone est-elle inondée?
Non
5.5 Biodiversité
Diversité des espèces:
- faible
Diversité des habitats:
- faible
5.6 Caractéristiques des exploitants des terres appliquant la Technologie
Sédentaire ou nomade:
- Sédentaire
Orientation du système de production:
- exploitation mixte (de subsistance/ commerciale)
- commercial/ de marché
Revenus hors exploitation:
- moins de 10% de tous les revenus
Niveau relatif de richesse:
- très pauvre
Individus ou groupes:
- individu/ ménage
- groupe/ communauté
Niveau de mécanisation:
- travail manuel
- mécanisé/ motorisé
Genre:
- hommes
Age des exploitants des terres:
- jeunes
- personnes d'âge moyen
- personnes âgées
5.7 Superficie moyenne des terres utilisées par les exploitants des terres appliquant la Technologie
- < 0,5 ha
- 0,5-1 ha
- 1-2 ha
- 2-5 ha
- 5-15 ha
- 15-50 ha
- 50-100 ha
- 100-500 ha
- 500-1 000 ha
- 1 000-10 000 ha
- > 10 000 ha
Cette superficie est-elle considérée comme de petite, moyenne ou grande dimension (en se référant au contexte local)?
- moyenne dimension
5.8 Propriété foncière, droits d’utilisation des terres et de l'eau
Propriété foncière:
- individu, sans titre de propriété
- individu, avec titre de propriété
Droits d’utilisation des terres:
- individuel
Droits d’utilisation de l’eau:
- individuel
Est-ce que les droits d'utilisation des terres sont fondés sur un système juridique traditionnel?
Oui
5.9 Accès aux services et aux infrastructures
santé:
- pauvre
- modéré
- bonne
éducation:
- pauvre
- modéré
- bonne
assistance technique:
- pauvre
- modéré
- bonne
emploi (par ex. hors exploitation):
- pauvre
- modéré
- bonne
marchés:
- pauvre
- modéré
- bonne
énergie:
- pauvre
- modéré
- bonne
routes et transports:
- pauvre
- modéré
- bonne
eau potable et assainissement:
- pauvre
- modéré
- bonne
services financiers:
- pauvre
- modéré
- bonne
6. Impacts et conclusions
6.1 Impacts sur site que la Technologie a montrés
Impacts socio-économiques
Production
production agricole
qualité des cultures
production d'énergie
Disponibilité et qualité de l'eau
disponibilité de l'eau d'irrigation
Commentaires/ spécifiez:
Indirectly, it improved water availability through higher water use efficiency
demande pour l'eau d'irrigation
Revenus et coûts
dépenses pour les intrants agricoles
revenus agricoles
Impacts écologiques
Cycle de l'eau/ ruissellement
évaporation
Précisez l'évaluation des impacts sur site (sous forme de mesures):
Assessments are based on expert judgement and available reports
6.2 Impacts hors site que la Technologie a montrés
disponibilité de l'eau
impact des gaz à effet de serre
6.3 Exposition et sensibilité de la Technologie aux changements progressifs et aux évènements extrêmes/catastrophes liés au climat (telles que perçues par les exploitants des terres)
Changements climatiques progressifs
Changements climatiques progressifs
Saison | Augmentation ou diminution | Comment la Technologie fait-elle face à cela? | |
---|---|---|---|
températures annuelles | augmente | très bien | |
températures saisonnières | saison sèche | augmente | très bien |
précipitations annuelles | décroît | modérément |
6.4 Analyse coûts-bénéfices
Quels sont les bénéfices comparativement aux coûts de mise en place (du point de vue des exploitants des terres)?
Rentabilité à court terme:
légèrement négative
Rentabilité à long terme:
très positive
Quels sont les bénéfices comparativement aux coûts d'entretien récurrents (du point de vue des exploitants des terres)?
Rentabilité à court terme:
très positive
Rentabilité à long terme:
très positive
6.5 Adoption de la Technologie
- 1-10%
De tous ceux qui ont adopté la Technologie, combien d'entre eux l'ont fait spontanément, à savoir sans recevoir aucune incitation matérielle, ou aucune rémunération? :
- 0-10%
6.6 Adaptation
La Technologie a-t-elle été récemment modifiée pour s'adapter à l'évolution des conditions?
Non
6.7 Points forts/ avantages/ possibilités de la Technologie
Points forts/ avantages/ possibilités du point de vue de l'exploitant des terres |
---|
Higher water use efficiency |
Higher energy efficiency and better use of solar energy |
Shortened cropping season without quantity or quality penalties |
More cost effective |
Increased net farm income |
Non-reliant on fluctuating and increasing energy prices |
6.8 Faiblesses/ inconvénients/ risques de la Technologie et moyens de les surmonter
Faiblesses/ inconvénients/ risques du point de vue de l’exploitant des terres | Comment peuvent-ils être surmontés? |
---|---|
High investment costs | The fully off-grid system is significantly more expensive. In contrast, the hybrid system—without batteries, shutting down at night, and drawing electricity from the grid when needed—has substantially lower investment costs due to requiring fewer solar panels and no batteries. |
High technical skills required | The hydroponic system and improved electrical system require additional expertise. This challenge can be addressed by building capacity and providing education to extension services. |
7. Références et liens
7.1 Méthodes/ sources d'information
- interviews/ entretiens avec les spécialistes/ experts de GDT
- compilation à partir de rapports et d'autres documents existants
Quand les données ont-elles été compilées (sur le terrain)?
2024
7.3 Liens vers les informations pertinentes en ligne
Titre/ description:
Arash Nejatian, Muthir Al Rawahy, Abdoul Aziz Niane, Amal Hassan Al Ahmadi, Vinay Nangia, Boubaker Dhehibi. (11/7/2024). Renewable Energy and Net House Integration for Sustainable Cucumber Crop Production in the Arabian Peninsula: Extending Growing Seasons and Reducing Resource Use. Journal of Sustainability Reseach, 6 (3).
URL:
https://hdl.handle.net/20.500.11766/69396
Titre/ description:
Arash Nejatian (Producer, Director), Abdoul Aziz Niane, Vinay Nangia. (30/6/2023). Solar Powered Net House.
URL:
https://hdl.handle.net/20.500.11766/69293
Titre/ description:
Arash Nejatian, Abdoul Aziz Niane, Vinay Nangia, Amal Hassan Al Ahmadi, Tahra Naqbi, Haliema Ibrahim, Mohamed Ahmed Hamdan Al Dhanhani. (16/6/2023). Enhancing Controlled Environment Agriculture in Desert Ecosystems with AC/DC Hybrid Solar Technology. International Journal of Energy Production and Management, 8 (2), pp. 107-114.
URL:
https://hdl.handle.net/20.500.11766/68508
Titre/ description:
Arash Nejatian, Abdoul Aziz Niane. (31/5/2023). Net House Powered by Solar Energy.
URL:
https://hdl.handle.net/20.500.11766/69304
Titre/ description:
Arash Nejatian, Abdoul Aziz Niane. (29/10/2022). Solar Energy Powered Net-House with Root Zone Cooling Hydroponic System. Beirut, Lebanon: International Center for Agricultural Research in the Dry Areas (ICARDA).
URL:
https://hdl.handle.net/20.500.11766/67736
Liens et modules
Développer tout Réduire toutLiens
Aucun lien
Modules
Aucun module trouvé