Technologies

No-till crop production [Russian Federation]

Nulevaya obrabotka, Notill

technologies_1288 - Russian Federation

Completeness: 65%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:
SLM specialist:

Kühling Insa

Hochschule Osnabrück

Germany

Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Agroholding Yubileinij - Russian Federation
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Amazonen-Werke H. Dreyer GmbH & Co (Amazone) - Germany
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Hochschule Osnabrück (HS Osnabrück) - Germany
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
University of Muenster (WWU Münster) - Germany

1.3 Conditions regarding the use of data documented through WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Yes

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

No-till farming (also called zero tillage or direct drilling) is a way of growing crops from year to year without disturbing the soil through tillage.

2.2 Detailed description of the Technology

Description:

No-till seeding (also direct-drilling, or direct-seeding) is most commonly identified by the feature that during tillage operations, as much as possible of the surface residue from the previous crop is left intact on the surface of the ground, whether this be the flattened or standing stubble of an arable crop that has been harvested or a sprayed dense sward of grass.

Purpose of the Technology: The purpose of no-till is to increase working efficiency (i.e. to save fuel, time and labour), increase soil organic matter and nitrogen contents, preserve soil structure and soil fauna, improve aeriation and water infiltration, conserve soil moisture, prevent soil erosion, and increase yields.

Establishment / maintenance activities and inputs: We use field trials to evaluate if and to which extent no-till seeding can contribute to sustainable land-management in Western Siberia. In cooperation with a large local agricultural enterprise, Agroholding Yubileinij, and a German manufacturer of agricultural machinery (AMAZONEN-Werke H. Dreyer GmbH & Co. KG), a field trial on 10 ha was set up near the city of Ishim, Tyumen province. In a randomized block design, two seeding parameters were varied, namely seeding depth and seeding rate (number of wheat seeds/ha). Both options were tested under conventional tillage, and no-till seeding, over three seasons (2013–2015).
The parameters soil moisture, plant available soil nitrogen content and grain yield were compared between all possible options of tillage approach (no-till/till), seeding depth and seeding rate.

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Russian Federation

Region/ State/ Province:

Russian Federation

Further specification of location:

Tyumen oblast (province)

Comments:

Total area covered by the SLM Technology is 5000 km2.

We are trailling no-till on 10 ha in Western Siberia, but indicate the potential area that could be farmed with no-till once the technology is established.

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • during experiments/ research
  • through projects/ external interventions
Comments (type of project, etc.):

established technique in many countries and agricultural systems, in the study area: on-farm application of the technology in own field trials from 2013 to 2015

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • reduce, prevent, restore land degradation

3.2 Current land use type(s) where the Technology is applied

Cropland

Cropland

  • Annual cropping
Annual cropping - Specify crops:
  • root/tuber crops - potatoes
  • wheat
Number of growing seasons per year:
  • 1
Specify:

Longest growing period in days: 170 Longest growing period from month to month: May to September

Forest/ woodlands

Forest/ woodlands

Products and services:
  • Timber
  • Fruits and nuts
Comments:

Major cash crop: Wheat
Major food crop: Wheat
Major other crops: Potatoes

Major land use problems (compiler’s opinion): Low yields; soil water content as main limiting factor for crop production

Major land use problems (land users’ perception): low and varying yields, yield uncertainty due to climate variability and changing political framework conditions

Forest products and services: timber, fruits and nuts

Constraints of settlement / urban (towns, villages and cities): population growth

Constraints of infrastructure network (roads, railways, pipe lines, power lines): major oil pipelines

Constraints of wastelands / deserts / glaciers / swamps (massive bogs and fens (mires))

Constraints of recreation (fishing, swimming)

3.4 Water supply

Water supply for the land on which the Technology is applied:
  • rainfed

3.5 SLM group to which the Technology belongs

  • minimal soil disturbance

3.6 SLM measures comprising the Technology

agronomic measures

agronomic measures

  • A1: Vegetation/ soil cover
  • A2: Organic matter/ soil fertility
  • A3: Soil surface treatment
A3: Differentiate tillage systems:

A 3.1: No tillage

management measures

management measures

  • M2: Change of management/ intensity level
Comments:

Main measures: agronomic measures, management measures

Type of agronomic measures: mulching, manure / compost / residues, zero tillage / no-till

3.7 Main types of land degradation addressed by the Technology

soil erosion by water

soil erosion by water

  • Wt: loss of topsoil/ surface erosion
chemical soil deterioration

chemical soil deterioration

  • Cn: fertility decline and reduced organic matter content (not caused by erosion)
water degradation

water degradation

  • Ha: aridification
Comments:

Main type of degradation addressed: Cn: fertility decline and reduced organic matter content

Secondary types of degradation addressed: Wt: loss of topsoil / surface erosion, Ha: aridification

Main causes of degradation: soil management, crop management (annual, perennial, tree/shrub)

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • prevent land degradation
  • reduce land degradation
Comments:

Main goals: prevention of land degradation

Secondary goals: mitigation / reduction of land degradation

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

Technical specifications (related to technical drawing):

Technical knowledge required for field staff / advisors: (field staff: moderate, advisor (agronomists): high)

Technical knowledge required for land users: (land user is identical with field staff/agricultural advisor)

Main technical functions: control of raindrop splash, increase of surface roughness, improvement of topsoil structure (compaction), increase / maintain water stored in soil

Secondary technical functions: control of dispersed runoff: retain / trap, control of dispersed runoff: impede / retard, control of concentrated runoff: retain / trap, control of concentrated runoff: impede / retard, improvement of ground cover, improvement of surface structure (crusting, sealing), increase in organic matter, increase in nutrient availability (supply, recycling,…), increase of infiltration, reduction in wind speed, increase of biomass (quantity)

Mulching
Material/ species: straw is retained as organic material
Quantity/ density: a lot

Manure / compost / residues
Material/ species: straw is retained as organic material

Zero tillage / no-till
Material/ species: straw is retained as organic material

Change of land use practices / intensity level: change traditional cultivation to no-till cropping system

4.6 Costs and inputs needed for maintenance/ recurrent activities (per year)

Comments:

NA

4.7 Most important factors affecting the costs

Describe the most determinate factors affecting the costs:

fuel price, wages

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Specify average annual rainfall (if known), in mm:

297.00

Specifications/ comments on rainfall:

No dry period, 170 day growing season

Agro-climatic zone
  • sub-humid

Thermal climate class: temperate

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
Comments and further specifications on topography:

Landforms: Also hill slopes, footslopes and valley floors (all ranked 3)
Slopes on average: Flat (90%) and gentle (5%)

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • fine/ heavy (clay)
Topsoil organic matter:
  • high (>3%)
If available, attach full soil description or specify the available information, e.g. soil type, soil PH/ acidity, Cation Exchange Capacity, nitrogen, salinity etc.

Soil depth on average: Very deep (ranked 1, most soils rather deep, 80% of all cultivated soils in this class) and deep (ranked 2)
Soil texture: Also coarse/light and medium (mix of soil textures)
Soil fertility: Medium (ranked 1). Also very high and high (both ranked 2) and low and very low (both ranked 3)
Soil drainage/infiltration: Good (ranked 1) and medium and poor (both ranked 2)
Soil water storage capacity: High (ranked 1). Also very high and medium (both ranked 2) as well as low and very low (both ranked 3)

5.4 Water availability and quality

Ground water table:

on surface

Availability of surface water:

good

Comments and further specifications on water quality and quantity:

Ground water table: On surface (the ground water table is at 0 cm in spring. The water flows then off and fields are sown in late May. Later in the year, drought is often a problem)
Water quality (untreated): Good drinking water, poor drinking water (treatement required) and for agricultural use only (irrigation) all ranked 1, unusable (ranked 2)

5.5 Biodiversity

Species diversity:
  • low
Comments and further specifications on biodiversity:

Biodiversity also medium (ranked 2) and high (ranked 3)

5.6 Characteristics of land users applying the Technology

Market orientation of production system:
  • commercial/ market
Off-farm income:
  • less than 10% of all income
Relative level of wealth:
  • rich
  • very rich
Individuals or groups:
  • employee (company, government)
Level of mechanization:
  • mechanized/ motorized
Gender:
  • women
  • men
Indicate other relevant characteristics of the land users:

Land users applying the Technology are mainly Leaders / privileged

Difference in the involvement of women and men: due to historical reasons (Soviet workforce structure), many women actively participate, e.g. as tractor drivers

Population density: < 10 persons/km2

Annual population growth: 0.5% - 1%

2% of the land users are very rich and own 70% of the land.
1% of the land users are rich and own 20% of the land.

Off-farm income specification: additional sources: shops, slaughterhouses, or other parts of the producing chain. Farmers usually generate most of their income by farming

5.7 Average area of land used by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
  • large-scale

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • company
Land use rights:
  • individual

5.9 Access to services and infrastructure

health:
  • poor
  • moderate
  • good
education:
  • poor
  • moderate
  • good
technical assistance:
  • poor
  • moderate
  • good
employment (e.g. off-farm):
  • poor
  • moderate
  • good
markets:
  • poor
  • moderate
  • good
energy:
  • poor
  • moderate
  • good
roads and transport:
  • poor
  • moderate
  • good
drinking water and sanitation:
  • poor
  • moderate
  • good
financial services:
  • poor
  • moderate
  • good

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased
Quantity before SLM:

2.5 t/ha

Quantity after SLM:

2.75 t/ha

fodder production

decreased
increased
Quantity before SLM:

2.5 t/ha

Quantity after SLM:

2.75 t/ha

risk of production failure

increased
decreased
Income and costs

expenses on agricultural inputs

increased
decreased
Quantity before SLM:

29 l/ha

Quantity after SLM:

3.7 l/ha

Comments/ specify:

Reduced fuel consumption. On the other hand increased use of agro-chemicals (herbicides and/ or pesticides +20-50%)

farm income

decreased
increased

Socio-cultural impacts

Social acceptance

decreased
increased
Comments/ specify:

Strong tradition to use conventional techniques

Improved livelihoods and human well-being

decreased
increased

Ecological impacts

Water cycle/ runoff

evaporation

increased
decreased
Soil

soil moisture

decreased
increased
Comments/ specify:

+ 40%

soil cover

reduced
improved

soil organic matter/ below ground C

decreased
increased
Biodiversity: vegetation, animals

biomass/ above ground C

decreased
increased

plant diversity

decreased
increased
Comments/ specify:

Increase in weed species

Climate and disaster risk reduction

wind velocity

increased
decreased

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Gradual climate change

Gradual climate change
Season increase or decrease How does the Technology cope with it?
annual temperature increase well

Climate-related extremes (disasters)

Meteorological disasters
How does the Technology cope with it?
local rainstorm well
local windstorm well
Climatological disasters
How does the Technology cope with it?
drought well
Hydrological disasters
How does the Technology cope with it?
general (river) flood not known

Other climate-related consequences

Other climate-related consequences
How does the Technology cope with it?
reduced growing period not known

6.5 Adoption of the Technology

Comments:

Comments on acceptance with external material support: so far, only used on field trials, not commercially.

There is a little trend towards spontaneous adoption of the Technology

Comments on adoption trend: slow uptake due to strong tradition in use of conventional techniques

6.7 Strengths/ advantages/ opportunities of the Technology

Strengths/ advantages/ opportunities in the land user’s view
as above
Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
potential to maintain and improve soil fertility
potential to increase yields
potential to safe on-farm costs, i.e. make production per area unit more efficient
potential to ensure stable yields under varying climatic conditions

6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them

Weaknesses/ disadvantages/ risks in the land user’s view How can they be overcome?
as above
Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view How can they be overcome?
need for more chemical plant protection and weed control, therefore more herbicide applications needed, environmental externalities
well-educated, leading/advisory staff needed to implement technology

7. References and links

7.1 Methods/ sources of information

7.2 References to available publications

Title, author, year, ISBN:

http://www.uni-muenster.de/SASCHA/en/index.html

Available from where? Costs?

free!

Links and modules

Expand all Collapse all

Modules