Soil bund & Fanya Juu combined & vegetated [埃塞俄比亚]
- 创建:
- 更新:
- 编制者: Daniel Danano
- 编辑者: –
- 审查者: Fabian Ottiger
technologies_1078 - 埃塞俄比亚
查看章节
全部展开 全部收起1. 一般信息
1.2 参与该技术评估和文件编制的资源人员和机构的联系方式
SLM专业人员:
Dibaba Israel
Rural land administration and natural resources management
埃塞俄比亚
有助于对技术进行记录/评估的机构名称(如相关)
Food and Agriculture Organization of the United Nations (FAO) - 意大利1.3 关于使用通过WOCAT记录的数据的条件
(现场)数据是什么时候汇编的?:
02/06/2011
编制者和关键资源人员接受有关使用通过WOCAT记录数据的条件。:
是
2. SLM技术的说明
2.1 技术简介
技术定义:
Soil bund and Fanya Juu constructed along the contour lines in microwatershed to conserve soil moisture and control erosion.
2.2 技术的详细说明
说明:
Soil bund and Fanya Juu constructed in combination in a microwatershed for retaining maximum possible rain water in the soil by obstructing runoff water. Soil bunds are suitable for steeper slopes compared to fanya juu terraces which are more effective in gentle and flatter slopes.Land users in the SWC area prefer to combine the two physical structures for many reasons.One important factor is the cost of establishment, which is a function of labour needed for the construction. Fanya juu which means throwing soil upslope in Kiswahili intails throwing soil upslope which is more labours than throwing soil to downslope in the case of soil bunds. The other reason is that cultivated lands with fanya juu terraces are not easily accessed by free grazing livestock. The ditches placed in the downslope side of the embankment (fanya juu) is not easily vrossable but in soil bund although not that easy livestock are seen to trample over the embankment and jump the ditch which is placed in the upslope side. The other advantage farmers consider is that Fanya juu is more efficient in controlling runoff because the water that overtops the embankment is trapped by the ditch. Fanya Juu despite its high cost is preferred to be applied in combination with bunds because of the other advantage that it forms bench terrace rapidly.
Purpose of the Technology: The major purpose is to trap as much rain water as possible and also control soil erosion. Cultivated lands with with Soil bund and Fanya Juu have shown remarkable improvement in soil moistureavailability to crops compared to fields with no measures.
Establishment / maintenance activities and inputs: Soil bund and Fanya Juu are established in the same way by digging soil from and embanking it on a contour line. A contour line is laid out by following zero gradient. Once the soil is dug and embanked it is lightly compacted to avoid colapse. To further ensure bund stabilityuseful trees/shrubs are planted.The planted tree/shrub species are those offering multiuses such as fodder, fertility improving and fuelwood. Maintenance: It is done by repairing breaks and managing planted trees on the structure or by upgrading the structure by increasing its height and plant improved tree and fruit tree species.
Natural / human environment: The technology is suitable to semiarid climatic condition which have erratic rains and where crop production is limited by soil moisture stress. Soils in the technology area are susceptable to erosion and therefore the structure should be stablized by planting trees or grass species.
2.5 已应用该技术的、本评估所涵盖的国家/地区/地点
国家:
埃塞俄比亚
区域/州/省:
Oromia
有关地点的进一步说明:
Oromia
Map
×2.6 实施日期
如果不知道确切的年份,请说明大概的日期:
- 不到10年前(最近)
2.7 技术介绍
详细说明该技术是如何引入的:
- 通过项目/外部干预
注释(项目类型等):
Fanya juu is first practiced in Kenya and soil bunds are also exotic but experienced widely in Ethiopia over the past 30 years.
3. SLM技术的分类
3.1 该技术的主要目的
- 减少、预防、恢复土地退化
- 保护生态系统
3.2 应用该技术的当前土地利用类型
农田
- 一年一作
主要农作物(经济作物及粮食作物):
Major cash crop: Teff
Major food crop: Teff
Major other crops: Maize & sorghum
森林/林地
注释:
Major land use problems (compiler’s opinion): Soil erosion, productivity decline, degraded grazing and forest lands, soil moisture stress.
Major land use problems (land users’ perception): Poor crop production, high fertilizer cost, lack of grazing land.
3.3 有关土地利用的更多信息
该技术所应用土地的供水:
- 雨养
具体说明:
Longest growing period in days: 210 Longest growing period from month to month: Apr - Nov
3.4 该技术所属的SLM组
- 横坡措施
- 地表水管理(泉、河、湖、海)
3.5 技术传播
注释:
Total area covered by the SLM Technology is 15 km2.
Soil and water conservation activities started in the area about 30 years ago by the extension program of the Ministry of Agriculture. Systematically planned SWC measures, however, came into picture recently as Integrated microwatersheds planning & implementation approach was introduced.
3.6 包含该技术的可持续土地管理措施
3.7 该技术强调的主要土地退化类型
土壤水蚀
- Wt:表土流失/地表侵蚀
- Wg:冲沟侵蚀/沟蚀
化学性土壤退化
- Cn:肥力下降和有机质含量下降(非侵蚀所致)
物理性土壤退化
- Pk:熟化和结壳
注释:
Main type of degradation addressed: Wt: loss of topsoil / surface erosion
Secondary types of degradation addressed: Wg: gully erosion / gullying, Cn: fertility decline and reduced organic matter content, Pk: sealing and crusting
3.8 防止、减少或恢复土地退化
具体数量名该技术与土地退化有关的目标:
- 减少土地退化
- 修复/恢复严重退化的土地
注释:
Secondary goals: rehabilitation / reclamation of denuded land
4. 技术规范、实施活动、投入和成本
4.2 技术规范/技术图纸说明
Technical knowledge required for field staff / advisors: high
Technical knowledge required for land users: moderate
Main technical functions: control of dispersed runoff: impede / retard
Secondary technical functions: control of dispersed runoff: retain / trap, reduction of slope angle, reduction of slope length
Early planting
Material/ species: sorghum and maize
Quantity/ density: 80-100000
Remarks: broadcasting
Mixed cropping / intercropping
Material/ species: sorghum-teff-beans
Remarks: broadcasting
Contour planting / strip cropping
Material/ species: maize, sunflower
Agronomic measure: mixed cropping / intercropping
Material/ species: wheat-safflower
Remarks: broadcasting
Legume inter-planting
Remarks: field crops (safflower sunflower)
Manure / compost / residues
Remarks: at homesteads
Mineral (inorganic) fertilizers
Material/ species: Dap, Urea
Quantity/ density: 1.5 q/ha
Minimum tillage
Remarks: at pilot level for maize planting
Contour tillage
Remarks: For cereal crops on terraced cultivated lands
Aligned: -contour
Vegetative material: T : trees / shrubs
Number of plants per (ha): 400
Vertical interval between rows / strips / blocks (m): 1
Scattered / dispersed
Vegetative material: T : trees / shrubs
Number of plants per (ha): 50-100
Trees/ shrubs species: casea seame, leucanea, sesbania
Grass species: local, elephant grass
Slope (which determines the spacing indicated above): 5.00%
If the original slope has changed as a result of the Technology, the slope today is (see figure below): 2.00%
Gradient along the rows / strips: 1.00%
Waterway
Depth of ditches/pits/dams (m): 1.5m
Width of ditches/pits/dams (m): 3m
Length of ditches/pits/dams (m): 500m
Height of bunds/banks/others (m): 1.5m
Width of bunds/banks/others (m): 3m
Length of bunds/banks/others (m): 3m
Bund/ bank: level
Spacing between structures (m): 1.5m
Depth of ditches/pits/dams (m): 0.5m
Width of ditches/pits/dams (m): 1m
Length of ditches/pits/dams (m): 150m
Height of bunds/banks/others (m): 0.65m
Width of bunds/banks/others (m): 1.5m
Length of bunds/banks/others (m): 150m
Structural measure: diversion ditch / cut-off drain
Spacing between structures (m): 200m
Depth of ditches/pits/dams (m): 0.75m
Width of ditches/pits/dams (m): 120m
Length of ditches/pits/dams (m): 150m
Height of bunds/banks/others (m): 0.75m
Width of bunds/banks/others (m): 1.2m
Length of bunds/banks/others (m): 150m
Construction material (earth): soil bund and fanya juu
Construction material (stone): waterways and diversions
Slope (which determines the spacing indicated above): 5%
If the original slope has changed as a result of the Technology, the slope today is: 2%
Lateral gradient along the structure: 0%
For water harvesting: the ratio between the area where the harvested water is applied and the total area from which water is collected is: 1:1
Vegetation is used for stabilisation of structures.
Change of land use type: cut and carry, weeding and cultivation and proper management.
Other type of management: site guarding - 0vergrazed lands are closed for establishing vegetation.
4.3 有关投入和成本计算的一般信息
其它/国家货币(具体说明):
Birr
注明美元与当地货币的汇率(如相关):1美元=:
8.6
注明雇用劳工的每日平均工资成本:
0.80
4.4 技术建立活动
活动 | 措施类型 | 时间 | |
---|---|---|---|
1. | collecting seeds | 植物性的 | dry season |
2. | seedling production | 植物性的 | dry season |
3. | seedling planting | 植物性的 | rainy season |
4. | direct sowing of seeds | 植物性的 | rainy season |
5. | contour marking | 结构性的 | dry season |
6. | embanking soils | 结构性的 | dry season |
7. | light compaction | 结构性的 | dry season |
8. | fencing | 管理 | dry season |
4.5 技术建立所需要的费用和投入
对投入进行具体说明 | 单位 | 数量 | 单位成本 | 每项投入的总成本 | 土地使用者承担的成本% | |
---|---|---|---|---|---|---|
劳动力 | Labour | ha | 1.0 | 199.0 | 199.0 | 20.0 |
设备 | Tools | ha | 63.0 | 5.0 | ||
植物材料 | Seeds | ha | 1.0 | 8.0 | 8.0 | 100.0 |
技术建立所需总成本 | 207.0 |
注释:
Duration of establishment phase: 84 month(s)
4.6 维护/经常性活动
活动 | 措施类型 | 时间/频率 | |
---|---|---|---|
1. | tillage /primary) | 农业学的 | |
2. | tillage/secondary/ | 农业学的 | |
3. | seedbed preartaion | 农业学的 | |
4. | planting/sowing | 农业学的 | |
5. | Weeding | 农业学的 | |
6. | cultivation | 农业学的 | |
7. | weeding and cultivation | 植物性的 | after rains /annual |
8. | replanting | 植物性的 | during rains /annual |
9. | repair breaks | 结构性的 | after rains/as required |
10. | upgrading | 结构性的 | dry season/annual |
11. | upgrading and repairing of breaks | 管理 | before rains / annual |
4.7 维护/经常性活动所需要的费用和投入(每年)
对投入进行具体说明 | 单位 | 数量 | 单位成本 | 每项投入的总成本 | 土地使用者承担的成本% | |
---|---|---|---|---|---|---|
劳动力 | Labour | ha | 1.0 | 13.0 | 13.0 | 100.0 |
技术维护所需总成本 | 13.0 |
注释:
length of terrace, number of trees planted
4.8 影响成本的最重要因素
描述影响成本的最决定性因素:
slope, soil condition labour availability
5. 自然和人文环境
5.1 气候
年降雨量
- < 250毫米
- 251-500毫米
- 501-750毫米
- 751-1,000毫米
- 1,001-1,500毫米
- 1,501-2,000毫米
- 2,001-3,000毫米
- 3,001-4,000毫米
- > 4,000毫米
指定年平均降雨量(若已知),单位为mm:
800.00
农业气候带
- 半干旱
Charachterized by high tempretures, windy and soil moisture stress
5.2 地形
平均坡度:
- 水平(0-2%)
- 缓降(3-5%)
- 平缓(6-10%)
- 滚坡(11-15%)
- 崎岖(16-30%)
- 陡峭(31-60%)
- 非常陡峭(>60%)
地形:
- 高原/平原
- 山脊
- 山坡
- 山地斜坡
- 麓坡
- 谷底
垂直分布带:
- 0-100 m a.s.l.
- 101-500 m a.s.l.
- 501-1,000 m a.s.l.
- 1,001-1,500 m a.s.l.
- 1,501-2,000 m a.s.l.
- 2,001-2,500 m a.s.l.
- 2,501-3,000 m a.s.l.
- 3,001-4,000 m a.s.l.
- > 4,000 m a.s.l.
关于地形的注释和进一步规范:
Landforms: Hill slopes (are largley cultivated and some grazing lands, ranked 1), valley floors (are totally cultivated lands and have potentials if suffiecent rains are received, ranked 2) and mountain slopes (are grazing and shrub lands. Valley floors depend for runoff water from this, ranked 3)
Slopes on average: Flat (bunds were built before but silted up due to soil burial, ranked 1), rolling (ranked 2) as well as gentle and moderate (both ranked 3)
5.3 土壤
平均土层深度:
- 非常浅(0-20厘米)
- 浅(21-50厘米)
- 中等深度(51-80厘米)
- 深(81-120厘米)
- 非常深(> 120厘米)
土壤质地(表土):
- 中粒(壤土、粉土)
表土有机质:
- 中(1-3%)
- 低(<1%)
如有可能,附上完整的土壤描述或具体说明可用的信息,例如土壤类型、土壤酸碱度、阳离子交换能力、氮、盐度等。:
Soil depth on average: Moderately deep (soils on gentle slopes where the technology is dominantly practiced, ranked 1), shallow (soils on hillslopes are predominantly , ranked 2) and deep (soils in the valley floors are moderately deep to deep, ranked 3)
Soil texture is medium (on gentle slopes and valley floors, ranked 1) and coarse/light (on hilly slopes and gentle slopes, ranked 2) and fine/heavy (ranked 3)
Soil fertility is very low (soils that are continuously cropped on gentle slopes, ranked 1), low (soils on steep slopes because of erosion, ranked 2) and medium (soils on valley floors because of deposited soils, ranked 3)
Topsoil organic matter is low (soils of shallow depth on hillslopes, ranked 1) and medium (soils on valley floors, ranked 2)
Soil drainage/infiltration is good
Soil water storage capacity is low (shallow soils on the hillslopes, ranked 1) and medium (soils in the valley floors, ranked 2)
5.6 应用该技术的土地使用者的特征
生产系统的市场定位:
- 生计(自给)
- 混合(生计/商业
非农收入:
- 收入的10-50%
相对财富水平:
- 平均水平
- 丰富
机械化水平:
- 手工作业
说明土地使用者的其他有关特征:
Population density: 100-200 persons/km2
Annual population growth: 2% - 3%
5% of the land users are rich (have means to pay labour).
35% of the land users are average wealthy (get organized in groups for labour share).
60% of the land users are poor (are beneficiaries of food for work).
Off-farm income specification: land users who have implemented SWC measures have better income compared with those who have not implemented SWC.
Level of mechanization: Manual labour (land is tilled by oxen plough)
Market orientation cropland: Subsistence (poor and average farmers produced for themselves, ranked 1) and mixed (better of and rich produce food for own consumption and also market, ranked 2)
5.7 应用该技术的土地使用者拥有或租用的平均土地面积
- < 0.5 公顷
- 0.5-1 公顷
- 1-2 公顷
- 2-5公顷
- 5-15公顷
- 15-50公顷
- 50-100公顷
- 100-500公顷
- 500-1,000公顷
- 1,000-10,000公顷
- > 10,000公顷
注释:
Most land users have land holding less than 1 hectar and fragmented
5.8 土地所有权、土地使用权和水使用权
土地所有权:
- 州
土地使用权:
- 自由进入(无组织)
- 个人
6. 影响和结论性说明
6.1 该技术的现场影响
社会经济效应
生产
作物生产
注释/具体说明:
due to soil moisture improvement
饲料生产
注释/具体说明:
bund stablization and area enclosure
饲料质量
注释/具体说明:
bund stablization and area enclosure
收入和成本
农业收入
注释/具体说明:
homesteads intensification
社会文化影响
社区机构
注释/具体说明:
farmers' groups for development work getting strengthened
SLM/土地退化知识
注释/具体说明:
land users have developed skills in marking contours and constructing bunds.
生态影响
水循环/径流
地表径流
SLM之前的数量:
50
SLM之后的数量:
0
土壤
土壤水分
注释/具体说明:
because of structural measures
土壤流失
注释/具体说明:
integrated measures
其它生态影响
Soil fertility
注释/具体说明:
leguminous plants and compost application
6.2 该技术的场外影响已经显现
下游洪水
注释/具体说明:
because of reduced runoff on uphills
下游淤积
注释/具体说明:
reduce soil erosion
6.4 成本效益分析
技术收益与技术建立成本相比如何(从土地使用者的角度看)?
短期回报:
轻度消极
长期回报:
积极
技术收益与技术维护成本/经常性成本相比如何(从土地使用者的角度看)?
短期回报:
稍微积极
长期回报:
积极
6.5 技术采用
在所有采用这项技术的人当中,有多少人是自发地采用该技术,即未获得任何物质奖励/付款?:
- 0-10%
注释:
95% of land user families have adopted the Technology with external material support
Comments on acceptance with external material support: estimates
5% of land user families have adopted the Technology without any external material support
Comments on spontaneous adoption: estimates
There is a moderate trend towards spontaneous adoption of the Technology
Comments on adoption trend: Spontaneous adoption is being observed who are average in wealth in particular and in families who have adequate awarness of SWC measures in general.
6.7 该技术的优点/长处/机会
编制者或其他关键资源人员认为的长处/优势/机会 |
---|
Structures do not hinder farm operations because they are widely spaced. How can they be sustained / enhanced? Practice inter bund measures that trap runoff efficiently. |
Fodder is grown on bunds and there is no area lost How can they be sustained / enhanced? Strengthening the introduction of high yielding fodder species. |
Homestead intensification activities are integrated with the SWC technology. How can they be sustained / enhanced? Embrace more land in the program |
Crop, fodder and wood production increased because of plantation, structures and area enclosures. How can they be sustained / enhanced? Use more efficient techniques and inputs that enhance soil fertility. |
Crop production has increased because of improved soil moisture avalability. |
6.8 技术的弱点/缺点/风险及其克服方法
土地使用者认为的弱点/缺点/风险 | 如何克服它们? |
---|---|
are labour consuming | organize farmers in groups and undertake repairs before the damage gets more serious |
require frequent maintenance |
编制者或其他关键资源人员认为的弱点/缺点/风险 | 如何克服它们? |
---|---|
require regular maintenance | make quality structures and avoid livestock interference |
require closer protection and guarding | practice more cut and carry |
链接和模块
全部展开 全部收起链接
无链接
模块
无模块