这是该案例的一个过时的非现行版本。 转到当前版本.
技术
闲置

Agricultural terraces with dry-stone walls [塞浦路斯]

Γεωργικές αναβαθμίδες με τοίχους ξερολιθιάς (Greek)

technologies_1702 - 塞浦路斯

完整性: 86%

1. 一般信息

1.2 参与该技术评估和文件编制的资源人员和机构的联系方式

关键资源人

SLM专业人员:
SLM专业人员:

Bruggeman Adriana

a.bruggeman@cyi.ac.cy

The Cyprus Institute

塞浦路斯

SLM专业人员:

Camera Corrado

c.camera@cyi.ac.cy

The Cyprus Insitute

塞浦路斯

有助于对技术进行记录/评估的项目名称(如相关)
Preventing and Remediating degradation of soils in Europe through Land Care (EU-RECARE )
有助于对技术进行记录/评估的机构名称(如相关)
The Cyprus Institute (The Cyprus Institute) - 塞浦路斯

1.3 关于使用通过WOCAT记录的数据的条件

(现场)数据是什么时候汇编的?:

01/09/2015

编制者和关键资源人员接受有关使用通过WOCAT记录数据的条件。:

1.4 所述技术的可持续性声明

这里所描述的技术在土地退化方面是否存在问题,导致无法被认为是一种可持续的土地管理技术?:

1.5 请参阅有关SLM方法的问卷

2. SLM技术的说明

2.1 技术简介

技术定义:

Dry-stone terraces built to create agricultural land, minimise soil erosion and retain soil moisture on steep mountain slopes.

2.2 技术的详细说明

说明:

Dry-stone terraces consist of a series of nearly levelled platforms built along contour lines at suitable intervals. These structures characterise a large part of the landscape in Cyprus, and especially in communities around Troodos Mountains where large areas have been converted to agricultural terraces. The typical terraces found in the study-area are narrow (1-3 m) to medium-base (3-6 m) bench terraces, constructed by cutting and filling in slopes between 20-40%. The terraces are supported by walls, whereby stone is the only construction material without any binding mortar.

Terracing is one of the oldest means of cultivating slopes while saving soil and water. Due to the steep terrain of Troodos Mountains, the establishment of terraces acts as sediment trap storing the washed-off soil material within the slope. In general, terraces were created to stop or reduce the degrading effect of soil erosion by intercepting and controlling the surface run-off velocity and by facilitating its slower infiltration. In such a way, the sediment that accumulates behind the terraces has created suitable land for farming. In addition, the construction of dry-stone walls serves a dual purpose: to clear the land from large rock and stones, and to enhance the stability of the bench terraces against loss of top-soil. This is a type of technology that was very much used in the past and seen today as an important cultural landscape and heritage for these communities.

The construction of dry-stone walls was usually completed by the family who owned the field. Men undertook the building while the rest of the family carried the stones; assistance was also offered by relatives and friends of the family. First, the topography, the height and shape of the terrace is evaluated. Using a fuse, the craftsman shapes a straight line which would follow while building the wall. The foundations are created by excavating a pit of ~0.3-0.5 m, depending on the type of soils and the size of the wall; fuse, pick, mattock and shovel are the typical tools used. The pit is filled with large, irregular-shaped stones.

The stones are used in their natural shape for the construction of the walls without any processing. They are separated according to their shape, size and texture. The stones usually come from the cleaning of fields which will be cultivated or from a small-scale quarrying of the mountain slope using pick and lever. Large and irregular stones are used for the foundations, and the more regular ones for the construction of walls. The smaller stones are placed in between the large stones as the linchpin, to provide better stability to the structure.
The wall follows the land inclination and is laid over the foundation. Large stones are placed on the lower courses of the wall and on the exterior side. The stones are placed by hand one over the other, while smaller stones and rubbles are put between them in order to achieve more stability and better positioning; the stones cross both vertically and horizontally in order to avoid the creation of columns which will make the structure less stable. The wall is built lengthwise following the foundations and it reclines inwards; declination from the foundations does not exceed 5%. The back side of the wall is filled-up with more irregular stones which are not suitable to be placed on the front side. The filling connects the wall with the soil and stabilises the structure, and allows the drainage of water that is collected from the terrace and is discharged through the stones of the wall.

Terrace farming of grapes, nut and fruit trees, along with natural (mainly sclerophylous) vegetation constitute the predominant land uses in this area. The total population in the eight mountain communities of Peristerona Watershed has decreased by more than 50% over the past 30 years. The depopulation of mountain communities is associated with the urbanisation trends and the high farming costs which led to the gradual reduction of agricultural activities in the area. These socio-economic attributes form the main constraining factors for soil conservation. Thus, although terraces have a particularly beneficial effect in maintaining the productive capacity of soils in these communities, the significant changes in the socio-economic structure of the agricultural population over the last decades and the high maintenance and labour required, has led farmers to gradually abandon terrace farming. Consequently, many of the mountain terraces are no longer cultivated and dry stone walls are not maintained, causing sometimes a domino effect of collapsing terraces.

2.3 技术照片

2.5 已应用该技术的、本评估所涵盖的国家/地区/地点

国家:

塞浦路斯

区域/州/省:

Nicosia

有关地点的进一步说明:

Northeast Pitsilia

2.6 实施日期

如果不知道确切的年份,请说明大概的日期:
  • 50多年前(传统)

2.7 技术介绍

详细说明该技术是如何引入的:
  • 作为传统系统的一部分(> 50 年)
注释(项目类型等):

Dry-stone terracing has been practice for centuries in Cyprus and in the study area. The rehabilitation of dry-stone terraces through community-based activities has been introduced in 2015 by the RECARE project case-study team and the local communities.

3. SLM技术的分类

3.1 该技术的主要目的

  • 减少、预防、恢复土地退化

3.2 应用该技术的当前土地利用类型

农田

农田

  • 乔木与灌木的种植
注释:

Major land use problems (compiler’s opinion): Soil erosion by water from degraded and collapsing dry-stone terraces.
Loss of productive capacity.
Major land use problems (land users’ perception): Gradual collapse of dry-stone walls.
Root rot and yield failure as a result of water-logging which is linked to poor drainage in terraced fields.

3.3 有关土地利用的更多信息

该技术所应用土地的供水:
  • 雨养
每年的生长季节数:
  • 1
具体说明:

Longest growing period in days: 240, Longest growing period from month to month: Mid March to early November (grapevines)

3.4 该技术所属的SLM组

  • 横坡措施

3.5 技术传播

具体说明该技术的分布:
  • 均匀地分布在一个区域
如果该技术均匀地分布在一个区域上,请注明覆盖的大致区域。:
  • 10-100 平方千米
注释:

Total area covered by the SLM Technology is 30.9 m2.
Dry-stone terraces characterise a large part of the landscape in Cyprus, and especially in communities around Troodos Mountains. There is a large variety of dry-stone terraces on the island, according to the morphology of each area and the accessibility to raw materials. The information reported here refer to the mountain communities in Northeast Pitsilia and particularly to the Peristerona watershed upstream communities (RECARE project case-study site).

3.6 包含该技术的可持续土地管理措施

结构措施

结构措施

  • S1:阶地
注释:

Main measures: structural measures

3.7 该技术强调的主要土地退化类型

土壤水蚀

土壤水蚀

  • Wt:表土流失/地表侵蚀
  • Wo:场外劣化效应
注释:

Main type of degradation addressed: Wt: loss of topsoil / surface erosion
Secondary types of degradation addressed: Wo: offsite degradation effects
Main causes of degradation: other human induced causes (specify) (Gradual abandonment of mountain agriculture), other natural causes (avalanches, volcanic eruptions, mud flows, highly susceptible natural resources, extreme topography, etc.) specify (Steep mountain terrain)
Secondary causes of degradation: land tenure (Small, fractured agricultural plots), governance / institutional (Lack of institutions for terrace maintenance)

3.8 防止、减少或恢复土地退化

具体数量名该技术与土地退化有关的目标:
  • 防止土地退化
  • 修复/恢复严重退化的土地

4. 技术规范、实施活动、投入和成本

4.1 该技术的技术图纸

作者:

a: FAO, 2000 & b: TPH, 2007

4.2 技术规范/技术图纸说明

(a) The typical terraces found in the study-area are narrow (1-3 m) to medium-base (3-6 m) bench terraces, constructed by cutting and filling in slopes between 20-40%. The height of terraces range between 0.75 to 2 meters, depending on the steepness and the morphology of each slope.

(b) The terraces are supported by walls, whereby stone - typically volcanic rock - is the only construction material without any binding mortar. Large and irregular stones are used for the foundations, while the more regular for the construction of walls. The smaller stones are placed in between the large stones as the linchpin, to provide better stability to the structure. The wall is built lengthwise following the foundations and it reclines inwards; declination from the foundations does not exceed 5%. The back side of the wall is filled-up with more irregular stones which are not suitable to be placed on the front side. The filling connects the wall with the soil and stabilises the structure, and allows the drainage of water that is collected from the terrace and is discharged through the stones of the wall.

Northeast Pitsilia, Nicosia
Technical knowledge required for land users: moderate (To maintain dry-stone wall terraces)
Technical knowledge required for Dry-stone artisans (experts builders): high (To reconstruct collapsed terraces)
Main technical functions: reduction of slope angle, sediment retention / trapping, sediment harvesting
Secondary technical functions: increase of infiltration, increase / maintain water stored in soil
Terrace: bench level
Vertical interval between structures (m): 1-2
Spacing between structures (m): 1-15
Construction material (stone): Natural volcanic rock available on the sites (mostly gabbro & diabase)
Lateral gradient along the structure: 0-8%

4.3 有关投入和成本计算的一般信息

其它/国家货币(具体说明):

Euro

注明美元与当地货币的汇率(如相关):1美元=:

0.88

注明雇用劳工的每日平均工资成本:

72.97

4.4 技术建立活动

活动 措施类型 时间
1. Land leveling and foundation 结构性的 Early autumn or late spring
2. Collection and transfer of stones 结构性的 Early autumn or late spring
3. Construction of stone-wall 结构性的 Early autumn or late spring

4.5 技术建立所需要的费用和投入

对投入进行具体说明 单位 数量 单位成本 每项投入的总成本 土地使用者承担的成本%
劳动力 Labour 4000.0 45.6 182400.0 100.0
技术建立所需总成本 182400.0
注释:

Duration of establishment phase: 83 month(s)

4.6 维护/经常性活动

活动 措施类型 时间/频率
1. Repairing collapsed walls 结构性的 Early autumn (before onset of rains), only on collapsed walls

4.7 维护/经常性活动所需要的费用和投入(每年)

对投入进行具体说明 单位 数量 单位成本 每项投入的总成本 土地使用者承担的成本%
劳动力 Labour 200.0 9.12 1824.0 100.0
技术维护所需总成本 1824.0
注释:

Machinery/ tools: Wedge, hammer, pick, hoe and bucket are the typical tools used for by stone builders for the construction and maintenance of dry-stone terraces.
The costs estimates are averages and were calculated for the length of terrace structures, i.e. per running meter of terrace walls. The average height of dry-stone walls is 1.5 meter and it takes approximately 5 hours/meter for a builder to fully construct it. This includes 1 hour/meter for land levelling and foundation, 1 hour/meter for the collection and transfer of the necessary stones and 3 hours/meter for building the wall. Stones are abundant in the area; builders do not charge for the stones but for the time required to collect and transfer. Also, each builder has its own tools (i.e. wedge, hammer, pick, hoe and bucket). Terrace builders charge 8 €/hour (or 9.12 $/hour). On average, there are approximately 4000 running meters of terrace walls per hectare. The above information is used to convert the construction cost per hectare.
Maintenance activities include reconstruction of the terrace walls, only in case of collapsing. The reconstruction takes 1 hour/meter. For the annual maintenance estimates, it is assumed that 200 out of 4000 meters of terrace walls per hectare (or 5%) will require maintenance. In other words, a newly constructed wall will be maintained once every 20 years, on average.

4.8 影响成本的最重要因素

描述影响成本的最决定性因素:

The principal input cost for the construction and maintenance of terraces is manual labour. There are only few dry-stone builders in the area.

5. 自然和人文环境

5.1 气候

年降雨量
  • < 250毫米
  • 251-500毫米
  • 501-750毫米
  • 751-1,000毫米
  • 1,001-1,500毫米
  • 1,501-2,000毫米
  • 2,001-3,000毫米
  • 3,001-4,000毫米
  • > 4,000毫米
有关降雨的规范/注释:

500-750mm: Seasonal rainfall (October to May) - Peristerona watershed upstream
250-500mm: Seasonal rainfall (October to May) - Peristerona watershed downstream

农业气候带
  • 半湿润
  • 半干旱

Thermal climate class: subtropics. Below 1000m a.s.l.
Thermal climate class: temperate. Above 1000m a.s.l.

5.2 地形

平均坡度:
  • 水平(0-2%)
  • 缓降(3-5%)
  • 平缓(6-10%)
  • 滚坡(11-15%)
  • 崎岖(16-30%)
  • 陡峭(31-60%)
  • 非常陡峭(>60%)
地形:
  • 高原/平原
  • 山脊
  • 山坡
  • 山地斜坡
  • 麓坡
  • 谷底
垂直分布带:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
说明该技术是否专门应用于:
  • 不相关

5.3 土壤

平均土层深度:
  • 非常浅(0-20厘米)
  • 浅(21-50厘米)
  • 中等深度(51-80厘米)
  • 深(81-120厘米)
  • 非常深(> 120厘米)
土壤质地(表土):
  • 粗粒/轻(砂质)
  • 中粒(壤土、粉土)
表土有机质:
  • 中(1-3%)
  • 低(<1%)

5.4 水资源可用性和质量

地下水位表:

> 50米

地表水的可用性:

中等

水质(未处理):

良好饮用水

5.5 生物多样性

物种多样性:
  • 中等

5.6 应用该技术的土地使用者的特征

定栖或游牧:
  • 定栖的
生产系统的市场定位:
  • 混合(生计/商业
非农收入:
  • 收入的10-50%
相对财富水平:
  • 平均水平
个人或集体:
  • 个人/家庭
机械化水平:
  • 手工作业
  • 机械化/电动
性别:
  • 女人
  • 男人
说明土地使用者的其他有关特征:

Land users applying the Technology are mainly common / average land users
Population density: 10-50 persons/km2
Annual population growth: negative; 4%
100% of the land users are average wealthy.
Off-farm income specification: Farming is a part-time activity for most land users in the area.

5.7 应用该技术的土地使用者拥有或租用的平均土地面积

  • < 0.5 公顷
  • 0.5-1 公顷
  • 1-2 公顷
  • 2-5公顷
  • 5-15公顷
  • 15-50公顷
  • 50-100公顷
  • 100-500公顷
  • 500-1,000公顷
  • 1,000-10,000公顷
  • > 10,000公顷
这被认为是小规模、中规模还是大规模的(参照当地实际情况)?:
  • 小规模的
注释:

The average for Cyprus is 3.4 ha/holding

5.8 土地所有权、土地使用权和水使用权

土地所有权:
  • 个人,有命名
土地使用权:
  • 个人
注释:

Agricultural land is privately owned

5.9 进入服务和基础设施的通道

健康:
  • 贫瘠
  • 适度的
教育:
  • 贫瘠
  • 适度的
技术援助:
  • 贫瘠
  • 适度的
就业(例如非农):
  • 贫瘠
  • 适度的
市场:
  • 贫瘠
  • 适度的
能源:
  • 贫瘠
  • 适度的
道路和交通:
  • 贫瘠
  • 适度的
饮用水和卫生设施:
  • 贫瘠
  • 适度的
金融服务:
  • 贫瘠
  • 适度的

6. 影响和结论性说明

6.1 该技术的现场影响

社会经济效应

生产

作物生产

降低
增加
注释/具体说明:

Terraces create agricultural land for crop production in slopes. However, the establishment of terraces does not imply increased crop yield.

生产区域

降低
增加
注释/具体说明:

Without terraces on mountain slopes, crop farming would have been almost impossible

水资源可用性和质量

灌溉用水需求

增加
降低
注释/具体说明:

Well constructed and maintained terraces improve water drainage and retain soil moisture.

收入和成本

农业投入费用

增加
降低
注释/具体说明:

More costly to grown on mountain terraces than in the plains. Also, maintenance of collapsed terrace walls is costly.

农业收入

降低
增加
注释/具体说明:

Farming in the study-site is practiced almost exclusively on terraces; well maintained terraces can increase farm income.

工作量

增加
降低
注释/具体说明:

Maintenance of collapsed terrace walls requires manual labour

社会文化影响

食品安全/自给自足

减少
改良
注释/具体说明:

Partly for those land users that still practice mountain terrace farming.

文化机会

减少
改良
注释/具体说明:

When terraces are maintained/rehabilitated through community-based activities.

娱乐机会

减少
改良
注释/具体说明:

When terraces are maintained/rehabilitated through community-based activities.

社区机构

削弱
加强
注释/具体说明:

When terraces are maintained/rehabilitated through community-based activities.

SLM/土地退化知识

减少
改良
注释/具体说明:

Dry-stone terracing is the typical soil conservation technology in the study-site

冲突缓解

恶化
改良

Contribution to human well-being

decreased
increased
注释/具体说明:

Terraced landscapes in the Troodos mountains represent a longstanding tradition of self-sustained communities. In the past, terrace farming was a main activity and has contributed to the livelihoods and well-being of these communities. Nowadays, terrace farming is still practiced by much fewer land users, mainly on part-time basis.

生态影响

水循环/径流

水的回收/收集

减少
改良
注释/具体说明:

One of the main functions of terraces.

地表径流

增加
降低
注释/具体说明:

One of the main functions of terraces.

土壤

土壤覆盖层

减少
改良
注释/具体说明:

When terraces are maintained

土壤流失

增加
降低
注释/具体说明:

One of the main functions of terraces.

生物多样性:植被、动物

栖息地多样性

降低
增加
注释/具体说明:

Dry-stone terraces create biodiversity habitats, especially for reptiles and arthropods

减少气候和灾害风险

火灾风险

增加
降低
注释/具体说明:

Well maintained terraces have less weeds than abandoned terraces, thus reducing the fire risk

其它生态影响

Abandoned or poorly maintained terraces can result in increased erosion, e.g. through the collapsing

low impact
high impact

6.2 该技术的场外影响已经显现

下游洪水

增加
减少
注释/具体说明:

Upstream terraces can reduce to a certain extent reduced downstream flooding

下游淤积

增加
降低
注释/具体说明:

Upstream terraces can reduce to a certain extent downstream siltation

对公共/私人基础设施的破坏

增加
减少
注释/具体说明:

Well maintain terraces reduce damage (erosion) on public (e.g. roads) and private (e.g. neighbours fields) infrastructure

6.3 技术对渐变气候以及与气候相关的极端情况/灾害的暴露和敏感性(土地使用者认为的极端情况/灾害)

渐变气候

渐变气候
季节 气候变化/极端天气的类型 该技术是如何应对的?
年温度 增加

气候有关的极端情况(灾害)

气象灾害
该技术是如何应对的?
局地暴雨 不好
局地风暴 未知
气候灾害
该技术是如何应对的?
干旱
水文灾害
该技术是如何应对的?
比较和缓的(河道)洪水 不好

其他气候相关的后果

其他气候相关的后果
该技术是如何应对的?
缩短生长期

6.4 成本效益分析

技术收益与技术建立成本相比如何(从土地使用者的角度看)?
短期回报:

消极

长期回报:

积极

技术收益与技术维护成本/经常性成本相比如何(从土地使用者的角度看)?
短期回报:

轻度消极

长期回报:

积极

6.5 技术采用

  • 大于 50%
如若可行,进行量化(住户数量和/或覆盖面积):

90% of the land user families and 8% of the stated area

在所有采用这项技术的人当中,有多少人是自发地采用该技术,即未获得任何物质奖励/付款?:
  • 10-50%
注释:

10% of land user families have adopted the Technology without any external material support
90% of land user families have adopted the Technology with external material support
Comments on acceptance with external material support: The majority of existing terraces in the area were subsidized.
There is a little trend towards spontaneous adoption of the Technology
Comments on adoption trend: There are very few farmers that maintain existing terraces or construct new ones.

6.7 该技术的优点/长处/机会

编制者或其他关键资源人员认为的长处/优势/机会
Indigenous technology of great agro-ecological value, adapted to local conditions.

Soil maintained on steep mountain slopes, thus reducing soil loss due to water erosion.

Terraces maintain the productive capacity of soils on steep slopes.

Water retention and longer storage of soil moisture, thus improving water use efficiency.

Terraces are part of cultural landscapes and heritage

6.8 技术的弱点/缺点/风险及其克服方法

编制者或其他关键资源人员认为的弱点/缺点/风险 如何克服它们?
Maintenance of dry-stone wall terraces is costly and labour intensive. Promote community-based terrace maintenance and utilise available community/subsidy funds for small cash compensation to terrace experts.
Terrace maintenance requires expert knowledge. Motivate the younger generation to engage in part-time terrace farming.
Aging of the dry-stone experts. Train young land users/owners on dry-stone terracing.
Technology does not lend itself to mechanisation. Not possible to overcome.

7. 参考和链接

7.1 信息的方法/来源

  • 与土地使用者的访谈

7.2 参考可用出版物

标题、作者、年份、ISBN:

FAO, 2000. Manual on integrated soil management and conservation practices. FAO Land and Water Bulletin 8, Rome, Italy: 230 pp.TPH, 2007. Dry stone constructions of Cyprus. PIO, Nicosia.

模块