技术

Terraces with improved seed and fertilizer application [阿富汗]

Palbandi bo tukhmihoi behbudyofta va kud

technologies_607 - 阿富汗

完整性: 86%

1. 一般信息

1.2 参与该技术评估和文件编制的资源人员和机构的联系方式

关键资源人

土地使用者:

Mohammad Azim Habibullah

Natural Resources Management Comittee (NRMC)

阿富汗

SLM专业人员:
SLM专业人员:
Researcher:
有助于对技术进行记录/评估的项目名称(如相关)
Potential and limitations for improved natural resource management (NRM) in mountain communities in the Rustaq district, Afghanistan (Rustaq NRM Study)
有助于对技术进行记录/评估的项目名称(如相关)
Livelihood Improvement Project Takhar, Afghanistan (LIPT)
有助于对技术进行记录/评估的机构名称(如相关)
Terre des Hommes (Terre des Hommes) - 瑞士
有助于对技术进行记录/评估的机构名称(如相关)
Swiss Agency for Development and Cooperation (DEZA / COSUDE / DDC / SDC) - 瑞士
有助于对技术进行记录/评估的机构名称(如相关)
CDE Centre for Development and Environment (CDE Centre for Development and Environment) - 瑞士
有助于对技术进行记录/评估的机构名称(如相关)
Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences (HAFL) - 瑞士

1.3 关于使用通过WOCAT记录的数据的条件

编制者和关键资源人员接受有关使用通过WOCAT记录数据的条件。:

1.4 所述技术的可持续性声明

这里所描述的技术在土地退化方面是否存在问题,导致无法被认为是一种可持续的土地管理技术?:

注释:

SLM practices documented in the frame of the Rustaq NRM study were established only recently (1-3 years ago). It is too early for a final judgment on the sustainability of these technologies within the human and natural environment of Chokar watershed.

1.5 参考关于SLM方法(使用WOCAT记录的SLM方法)的调查问卷

Watershed Associations (WSA) and Natural Resource Management Committees (NRMC)
approaches

Watershed Associations (WSA) and Natural Resource Management Committees … [阿富汗]

Two Watershed Associations (WSA), in Chaker and Nahristan watershed areas respectively, are registered at the national level with the Ministry of Agriculture Irrigation and Livestock (MAIL) and at the regional level with the Department of Agriculture. Both associations are strong, active, dynamic, and have the capacity to coordinate and support …

  • 编制者: Bettina Wolfgramm

2. SLM技术的说明

2.1 技术简介

技术定义:

Terraces are established on mountain slopes used mainly for cropping wheat, with the purpose of soil protection from erosion, preserving runoff, sediments and nutrients on-site. Improved seeds and fertilizer are applied on the terraces for increasing crop yield, but also vegetation cover and biomass production, and thus prevent further land degradation.

2.2 技术的详细说明

说明:

Project supported implementation of terraces with application of improved seeds and fertilizer has taken place in the villages Sari Joy, Jawaz Khana and Dashti Mirzai, located in Chokar watershed of Rustaq District in Northern Afghanistan. The Chokar watershed is a mountainous area situated between 600 - 2,500 m above sea level. The climate is semi-arid with harsh and cold weather in winter and hot and dry summers. The annual precipitation in average years is 580mm. Land degradation affects all forms of land use and includes low vegetation cover, heavy top soil erosion from water, and poor soil fertility. Unsustainable agricultural practices, over-exploitation and high pressure on the natural resources are adversely impacting on the socio-economic well-being of local communities as well as contributing to the risk for being adversely affected by drought as well as landslides and flash floods triggered by heavy rainfall.
The data used for the documentation of the technology is based on field research conducted in Chokar watershed, namely in the villages: Sari Joy, Jawaz Khana and Dashti Mirzai. These villages represent the upper, the middle and the lower zone of Chokar watershed, respectively. They differ considerably in access to services and infrastructure, but in general are poorly served. The communities depend mainly on land resources for sustaining their livelihoods. In a good year with high yields, wheat-self-sufficiency lasts about 5 months.
Since 2012 the Livelihood Improvement Project Takhar (LIPT) implemented by Terre des hommes (Tdh) Switzerland has initiated a range of NRM interventions. The project introduced terraces as sustainable land management practices on private plots, situated on rolling (11-15%) and hilly (16-30%) slopes to protect the land from soil erosion and prevent the loss of water and fertile topsoil, seeds and fertilizers. The average plot size for terrace implementation is 2 Jerib (0.4 hectares) with contour strips of 40m x 4m. The height of the risers is 1m-1,5 m. Terrace benches are built along the contour by moving the soil above the bench downwards. The leveled benches of the terrace are cultivated with wheat. The risers of the terrace are mostly used for growing fodder crops, mostly alfalfa, which also helps to stabilize the terrace. If medicinal herbs (ferula) are included they are cultivated along the bench contours .
Maintenance activities include small repair work on the riser by adding some amount of soil and re-sowing of alfalfa seeds on those spots.
The terraces allow application of improved seeds and fertilizers without them being washed off. The land-users report noticeable increase of wheat yield from the terraced plot with application of improved seeds and fertilizer compared to the non-terraced plot. An average plot of 0.2 ha on non-terraced hilly cropland used to give about 70 kg of wheat (350kg/ha). On terraces the yield has increased/ doubled to 140 kg on the same plot area (700kg/ha). The expectations regarding terraces remain high as over the time the land user hope their land will become more stable and improved soil moisture and fertility will have positive impact on the productivity as well. However, so far no cost-benefit assessment has been conducted allowing attribution of individual measure to the wheat increase.
Many land users are interested in the terrace technology due to a number of environmental and economic benefits expected, however the costs for building the terrace are considered high by an average local land user. They have to rely on external support in order to have sufficient resources for implementation. Women considered an advantage that during the establishment phase, men were paid by the project to work on their own land (or other villagers land) when building the terraces. Thus, there was no need for men to go for seasonal labour migration and they stayed at home.

2.3 技术照片

2.5 已应用该技术的、本评估所涵盖的国家/地区/地点

国家:

阿富汗

区域/州/省:

Takhar Province, Rustaq District

有关地点的进一步说明:

Chokar Watershed: Sari Joy (upper watershed), Jawaz Khana (middle watershed), Dashti Mirzai (lower watershed)

具体说明该技术的分布:
  • 均匀地分布在一个区域
如果不知道精确的区域,请注明大致覆盖的区域:
  • 0.1-1 平方千米
注释:

This documentation is based on the experiences of SLM impementers from Sari Joy (8 terraced plots), Jawaz Khana, (7 terraced plots), and Dashti Mirzai (11 terraced plots) as compiled during FGDs. The terraces located in Jawaz Khana have not been digitized yet. Additionally insights were gained through interviews in all three villages on farmers experiences and observations of terraced plots, with both SLM implementers (46) and observers (28).

2.6 实施日期

如果不知道确切的年份,请说明大概的日期:
  • 不到10年前(最近)

2.7 技术介绍

详细说明该技术是如何引入的:
  • 通过项目/外部干预
注释(项目类型等):

Livelihood Improvement Project Takhar (LIPT) supported by Swiss Development Cooperation (SDC) from 2012-17

3. SLM技术的分类

3.1 该技术的主要目的

  • 改良生产
  • 减少、预防、恢复土地退化

3.2 应用该技术的当前土地利用类型

农田

农田

  • 一年一作
  • 多年一作(非木材)
  • Wheat, Alfalfa
每年的生长季节数:
  • 1
具体说明:

May-July

3.3 由于技术的实施,土地使用是否发生了变化?

注释:

Before implementation of the Technology, only annual crops were cultivated, with wheat as the main crop. Plots were ploughed along the countours mostly by animal traction. In recent years land users are starting to use tractors for ploughing, , where villages and plots are accessible by machinery.

3.4 供水

该技术所应用土地的供水:
  • 雨养

3.5 该技术所属的SLM组

  • 横坡措施

3.6 包含该技术的可持续土地管理措施

农艺措施

农艺措施

  • A2:有机质/土壤肥力
植物措施

植物措施

  • V2:草和多年生草本植物
结构措施

结构措施

  • S1:阶地
注释:

Agronomic measures: Terraces increase the economic viability of applying improved seeds and (chemical) fertilizer to badly nutrient depleted cropland.
Vegetative measures: Alfalfa is planted on the risers for stabilizing the terraces, and as an important contribution to fodder cropping.
Structural measures: The leveling of countour strips allows to harvest water and sediments.

3.7 该技术强调的主要土地退化类型

土壤水蚀

土壤水蚀

  • Wt:表土流失/地表侵蚀
  • Wg:冲沟侵蚀/沟蚀
  • Wo:场外劣化效应
物理性土壤退化

物理性土壤退化

  • Pi:覆土
生物性退化

生物性退化

  • Bc:植被覆盖的减少
  • Bq:数量/生物量减少
水质恶化

水质恶化

3.8 防止、减少或恢复土地退化

具体数量名该技术与土地退化有关的目标:
  • 减少土地退化
  • 修复/恢复严重退化的土地

4. 技术规范、实施活动、投入和成本

4.1 该技术的技术图纸

技术规范(与技术图纸相关):

Terraces are established predominantly on a privately owned land in a mountainous landscape with varying steepness of slopes.
The average size of a plot is 2 Jerib, which is equal to 0.4 ha. The design of the terrace depends on the steepness of the slope. Mostly rolling (11-15%) and hilly (16-30%) slopes are used for building terraces.
Using an A-frame, the terrace is designed by dividing the slope into contour strips. Depending on the slope steepness, the terrace bench is around 4m wide and the the height of the risers is 1m-1,5 m. The terrace benches are built along the contour by moving the soil of upper bench to the lower bench. The leveled benches of the terrace are cultivated with wheat. The risers of the terrace are mostly used for growing fodder crops, such as alfalfa, which also helps to stabilize the terrace. If medicinal herbs are included, such as ferula, they are cultivated along the bench contours.

作者:

Aslam Qadamov

日期:

14/02/2017

4.2 有关投入和成本计算的一般信息

具体说明成本和投入是如何计算的:
  • 每个技术区域
注明尺寸和面积单位:

1 ha

具体说明成本计算所用货币:
  • 美元
如相关,注明美元与当地货币的汇率(例如1美元=79.9巴西雷亚尔):1美元=:

67.0

注明雇用劳工的每日平均工资成本:

5.2-5.3 USD

4.3 技术建立活动

活动 时间(季度)
1. Selection of the area for establishing a terrace (Men) Autumn
2. Designing of the terrace using A-frame, assisted by trained technician/project staff (Men) End of autumn after rainy days
3. Leveling the soil with a shovel (Men) Autumn/Winter
4. Sowing of alfalfa seeds on the risers (Men/women) After 20 days of sowing wheat
5. Sowing of wheat seeds on benches (Men/Women) Winter/Spring
6. Sowing of ferula along the contours (Men/women) Winter/Spring

4.4 技术建立所需要的费用和投入

对投入进行具体说明 单位 数量 单位成本 每项投入的总成本 土地使用者承担的成本%
劳动力 Designing of the terrace using A-frame person-day 10.0 9.0 90.0
劳动力 Leveling the soil with a shovel person-day 150.0 5.3 795.0 51.0
劳动力 Sowing of wheat and alfalfa seeds person-day 10.0 5.3 53.0 51.0
劳动力 Sowing of ferula person-day 2.0 5.3 10.6 100.0
设备 Pick axe Pcs 1.0 3.0 3.0 100.0
设备 Pitchfork Pcs 1.0 5.3 5.3 100.0
设备 Wheel barrow Pcs 1.0 38.0 38.0 100.0
设备 Shovel Pcs 1.0 3.8 3.8
设备 Hoe Pcs 1.0 7.5 7.5
设备 A-Frame Pcs 1.0 6.0 6.0
植物材料 Wheat seeds Kg 140.0 0.42 58.8
植物材料 Alfalfa seeds Kg 17.5 0.42 7.35 100.0
植物材料 Ferula seeds Kg 2.5 6.35 15.88 100.0
肥料和杀菌剂 DAP Kg 125.0 0.9 112.5
肥料和杀菌剂 Urea Kg 125.0 0.45 56.25
肥料和杀菌剂 Herbicide Liter 50.0 0.25 12.5
技术建立所需总成本 1275.48
技术建立总成本,美元 19.04
如果土地使用者负担的费用少于100%,请注明由谁负担其余费用:

Livelihood Improvement Project Takhar (LIPT) implemented by Terre des Hommes (Tdh)

注释:

Equipment provided by the project was re-used for the implemenation of different SLM practices on different plots. For completness equipment costs are fully accounted for.
Costs calculated for a Technology area of 1ha was only done for the purpose of the WOCAT documentation. In reality SLM plots are on average 0.4 ha or 2 jiribs. Costs were simply multiplied by 2.5. The actual costs for a 1ha plot might be slightly different.

4.5 维护/经常性活动

活动 时间/频率
1. Ploughing the land with animal traction (Men) Winter/Spring/Annually
2. Sowing of wheat seeds on benches (Men/Women) Winter/Spring/Annually
3. Application of fertilizer (Men/Women) Fall
4. Weeding (Women) Summer
5. Harvesting wheat (Men and women together) Summer/Fall
6. Harvesting alfalfa (Men and women together) Summer/Fall
7. Collecting and delivering harvested wheat (Men and women) Fall
8. Collecting and delivering harvested alfalfa (Men and women) Fall
9. Repairing terrace risers with a shovel (Men) Winter/Spring/After heavy rain or snow
10. Sowing alfalfa seeds on the repaired area (Men/Women) Winter/Spring/When required

4.6 维护/经常性活动所需要的费用和投入(每年)

对投入进行具体说明 单位 数量 单位成本 每项投入的总成本 土地使用者承担的成本%
劳动力 Ploughing the land with animal traction person day 2.5 5.3 13.25 100.0
劳动力 Sowing of wheat seeds on benches person day 5.0 5.3 26.5 100.0
劳动力 Weeding and Fertilizer application person day 5.0 5.3 26.5 100.0
劳动力 Harvesting and delivering wheat and alfalfa person day 70.0 5.3 371.0 100.0
设备 Sickle Pcs 1.0 100.0
植物材料 Wheat seeds Kg 140.0 0.42 58.8 100.0
肥料和杀菌剂 DAP Kg 125.0 0.9 112.5 100.0
肥料和杀菌剂 Urea Kg 125.0 0.45 56.25 100.0
肥料和杀菌剂 Herbicide Liter 50.0 0.25 12.5 100.0
技术维护所需总成本 677.3
技术维护总成本,美元 10.11
如果土地使用者负担的费用少于100%,请注明由谁负担其余费用:

Livelihood Improvement Project Takhar (LIPT) implemented by Terre des Hommes (Tdh)

注释:

Costs calculated for a Technology area of 1ha was only done for the purpose of the WOCAT documentation. In reality SLM plots are on average 0.4 ha or 2 jiribs. Costs were simply multiplied by 2.5. The actual costs for a 1ha plot might be slightly different.

4.7 影响成本的最重要因素

描述影响成本的最决定性因素:

Due to the remoteness of the villages where the Technology has been implemented, all the inputs for establishment, such as agricultural equipment, plant material, fertilizers, etc., are purchased in Rustaq town. The expenses for traveling and delivering the inputs affect the establishment costs.

5. 自然和人文环境

5.1 气候

年降雨量
  • < 250毫米
  • 251-500毫米
  • 501-750毫米
  • 751-1,000毫米
  • 1,001-1,500毫米
  • 1,501-2,000毫米
  • 2,001-3,000毫米
  • 3,001-4,000毫米
  • > 4,000毫米
指定年平均降雨量(若已知),单位为mm:

580.00

有关降雨的规范/注释:

Average annual precipitation for the area was calculated with 580 mm, with minimums in dry years (2000 and 2001) of 270 mm and maximums in wet years (2009/2010) of 830 mm. The absolute maximum rainfall was calculated for 1986 with 1024 mm. The data series covers the time from 1979 to 2014.

注明所考虑的参考气象站名称:

Climate Forecast System Reanalysis (CFSR), http://rda.ucar.edu/pub/cfsr.html

农业气候带
  • 半干旱

Specifications: Derived from the publically available dataset on length of growing period (LGP) (Fischer 2009 / IIASA-FAO). Internet link: http://tiles.arcgis.com/tiles/P8Cok4qAP1sTVE59/arcgis/rest/services/Length_of_growing_period/MapServer

5.2 地形

平均坡度:
  • 水平(0-2%)
  • 缓降(3-5%)
  • 平缓(6-10%)
  • 滚坡(11-15%)
  • 崎岖(16-30%)
  • 陡峭(31-60%)
  • 非常陡峭(>60%)
地形:
  • 高原/平原
  • 山脊
  • 山坡
  • 山地斜坡
  • 麓坡
  • 谷底
垂直分布带:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
关于地形的注释和进一步规范:

The information was derived from two different sources:
-SLM implementers information provided in the Land User Protocol (LUP) during an FGD
-Elevation and slope statistics derived for terraced plots from ASTGTM. ASTGTM is the ASTER Global Digital Elevation Model V002 with a 30 m spatial resolution. More information on ASTGTM is available here: https://lpdaac.usgs.gov/node/1079. The data can be downloaded here: https://gdex.cr.usgs.gov/gdex/

5.3 土壤

平均土层深度:
  • 非常浅(0-20厘米)
  • 浅(21-50厘米)
  • 中等深度(51-80厘米)
  • 深(81-120厘米)
  • 非常深(> 120厘米)
土壤质地(表土):
  • 中粒(壤土、粉土)
土壤质地(地表以下> 20厘米):
  • 中粒(壤土、粉土)
表土有机质:
  • 中(1-3%)
  • 低(<1%)
如有可能,附上完整的土壤描述或具体说明可用的信息,例如土壤类型、土壤酸碱度、阳离子交换能力、氮、盐度等。:

Local land users differentiate between the following soil types where terraces are implemented:
-Light soils: moderately deep; texture of topsoil medium (loamy, silty); low topsoil organic matter
-Dark soils: moderately deep; texture of topsoil medium (loamy, silty); medium topsoil organic matter

5.4 水资源可用性和质量

地表水的可用性:

中等

水质(未处理):

良好饮用水

水的盐度有问题吗?:

该区域正在发生洪水吗?:

规律性:

偶然

关于水质和水量的注释和进一步规范:

Floods occur mainly during the rainy seasons in spring and autumn. Availability of surface water differs for the three study villages Sari Joy, Jawaz Khana, and Dashti Mirzai. Sari Joy has sources and good surface water availability. Jawaz Khana has poor water availability as water has to be fetched from a lower laying stream. Dashti Mirzai has good water availability also from an irrigation channel.

5.5 生物多样性

物种多样性:
栖息地多样性:

5.6 应用该技术的土地使用者的特征

定栖或游牧:
  • 定栖的
生产系统的市场定位:
  • 生计(自给)
  • 混合(生计/商业)
非农收入:
  • 收入的10-50%
  • > 收入的50%
相对财富水平:
  • 平均水平
  • 丰富
个人或集体:
  • 个人/家庭
机械化水平:
  • 手工作业
  • 畜力牵引
性别:
  • 女人
  • 男人
土地使用者的年龄:
  • 中年人
  • 老年人

5.7 应用该技术的土地使用者使用的平均土地面积

  • < 0.5 公顷
  • 0.5-1 公顷
  • 1-2 公顷
  • 2-5公顷
  • 5-15公顷
  • 15-50公顷
  • 50-100公顷
  • 100-500公顷
  • 500-1,000公顷
  • 1,000-10,000公顷
  • > 10,000公顷
这被认为是小规模、中规模还是大规模的(参照当地实际情况)?:
  • 中等规模的

5.8 土地所有权、土地使用权和水使用权

土地所有权:
  • 个人,未命名
土地使用权:
  • 个人
用水权:
  • 社区(有组织)
注释:

Those who own land and use water for irrigation are obliged to pay for the water. The payment is made both in kind and in cash to the Mirob, the person in charge of distributing water in the community. The amount of the payment varies from village to village.

6. 影响和结论性说明

6.1 该技术的现场影响

社会经济效应

生产

作物生产

降低
增加
SLM之前的数量:

350 kg / ha

SLM之后的数量:

700 kg / ha

注释/具体说明:

The integration of measures including agronomic (improved seed and fertilizer) and structural (terraces to control water flow and loss of top soil, including nutrients and seeds) results in an increase of crop yield already in the first year. The effects cannot be attributed to one or the other measure specifically.

饲料生产

降低
增加
注释/具体说明:

Alfalfa is planted on the risers.

产品多样性

降低
增加

生产区域

降低
增加
注释/具体说明:

No change in total area for production, as the riser of the terraces are used for fodder production. However, there is some reduction of area available for annual crop production.

社会文化影响

食品安全/自给自足

减少
改良
注释/具体说明:

The yield of the main staple crop (wheat)has been reported to be double on terraced plots with application of improved seed and fertilizer. In addition, fodder crops, such as alfalfa grown on the risers, can be harvested.

SLM/土地退化知识

减少
改良
注释/具体说明:

Technicians in the villages were trained in the use of A-frames. Implementers of terraces voiced that they themselves would not be able to replicated the designing of terraces.

社会经济弱势群体的情况

恶化
改良
注释/具体说明:

Female headed households are not included. Technology is implemented on private land, therefore people without land are excluded. However, they have the opportunity to earn income as a hired worker for the SLM implementers.

生态影响

水循环/径流

地表径流

增加
降低
土壤

土壤水分

降低
增加
注释/具体说明:

in situ water harvesting

土壤流失

增加
降低
生物多样性:植被、动物

植被覆盖

降低
增加
注释/具体说明:

Both an increase in vegetation cover during the growing season when most erosive rains are observed as well as permenant vegetation cover from perennial alfalfa plants can been observed.

生物量/地上C

降低
增加

6.2 该技术的场外影响已经显现

下游洪水

增加
减少

下游淤积

增加
降低

缓冲/过滤能力

减少
改良
对场外影响(测量)的评估进行具体说明:

These comments apply to 6.1 and 6.2:
- Socio-economic impacts: Based on the Land User Protocols: Individual SLM implementers were asked to rate the benefits for their Technology. They were asked to indicate production increase of crops; fodder; animals; wood; non-wood forest products; increase in product diversity; or production area. The most important increase they rated with 3, the second most with 2, others with 1 point. Averages of the points given by all SLM implementers are reflected here.
- Ecological impacts and off-site impacts: Based on the Land User Protocols: Individual SLM implementers were asked to rate the on-site and off-site impacts of the Technology on water; soil; and vegetation. They were asked to indicate the strength of impacts with three, two or one points. Averages of the points given by all implementers are reflected here.

6.3 技术对渐变气候以及与气候相关的极端情况/灾害的暴露和敏感性(土地使用者认为的极端情况/灾害)

气候有关的极端情况(灾害)

气象灾害
该技术是如何应对的?
局地暴雨 非常好
气候灾害
该技术是如何应对的?
干旱
注释:

Based on the multi-criteria matrix: SLM implementers from three villages were asked to jointly discuss and rate how much the SLM technology reduced the lands vulnerability to drought and local rainstorms. Only vulnerability to the most prevalent climate extremes (drought and local rainstorms) was discussed. SLM technologies were rated as reducing vulnerability poorly , well, or very well. The average points reflected here are from multi-criteria matrices compiled in three villages where the SLM technology had been implemented.

6.4 成本效益分析

注释:

Costs: As larger parts of the establishment of the technology were covered by the project, farmers consideration of the total costs are likely underestimated.
Benefits: Two plots were terraced in 2012, and 5 plots in 2013. However, most terraces were implemented in 2014 (11 plots ) and 2015 (8 plots). The Rustaq NRM study was conducted in autumn 2016. 1-2 years of cultivating the terrace system is too short a period for providing evidence on short- and long-term returns.

6.5 技术采用

  • 1-10%
如若可行,进行量化(住户数量和/或覆盖面积):

10.7 ha has been terraced within the 3 study villages with LIPT project support.

在所有采用这项技术的人当中,有多少人是自发的,即未获得任何物质奖励/付款?:
  • 0-10%
注释:

Based on the Land User Protocol: Individual SLM implementers were asked whether they received support for implementing the Technology. Each indicated the type of support he received from the proposed options: "Full Support 100%, Some Support, No Support 0%". 3 implementers claimed full project support, 22 claimed some support, and 1 implementer claimed no project support.

6.6 适应

最近是否对该技术进行了修改以适应不断变化的条件?:

若是,说明它适应了哪些变化的条件:
  • 不断变化的市场
具体说明技术的适应性(设计、材料/品种等):

Ferula is planted on the terrace in addition to wheat and alfalfa. The resin-like gum from the dried sap extracted from the stem and roots of Ferula is in high demand as a basic product for pharmaceuticals. Ferula can be sold to local merchants, who resell it to India, and is thus intercropped by some farmers on the terraces.

6.7 该技术的优点/长处/机会

土地使用者眼中的长处/优势/机会
Notable higher crop yields on the plots where improved seeds and fertilizer are applied on newly established terraces. Farmers have high expectations for the years to come and for yields of annual crops (such as wheat) to remain high.
Diversity of crops planted on terraces is valued by the land users. For example, cultivating wheat and alfalfa on the terraced plot provides household with the key crop and also fodder for the livestock and thereby contributes to securing food for the family and maintaining better health of their cattle. Additionally, some farmers have started intercropping Ferula, a medical herb and cash crop.
Farmers percieve soil quality on terraced plots with fertilizer application to improve. An improvement in soil fertility (which may relate first of all to the effects of fertilizer application) and increased soil moisture have been reported. Single statements also related to effectiveness of applying fertilizer on terraced plots, as here fertilizer is not washed away during rains.
Terraced plots are considered less vulnerable to the effects of rainstorms and dry spells, than non-terraced plots on slopes where annual crops are cultivated.
Women considered an advantage that during the establishment phase, men were paid by the project to work on their own land when building the terraces. Thus, there was no need for men to go for seasonal labour migration and they stayed at home. At the same time the terracing of the land is seen as an opportunity to improve the land resources on their families plots. An increase in women's workload related to bringing food to the field during establishment was considered to be acceptable, especially compared to the expected increase in yields.
编制者或其他关键资源人员认为的长处/优势/机会
The application of fertilizer on terraces is expected to show multiple effects: yields from these fertility depleted croplands can be increased. This includes an increase in biomass production, which may be used as green manure on the field or as animal feed or as straw. Further, vegetation cover during the growing period can be increased, which helps to protect the soil from erosive rains.
The project paid establishment of terraces on farmers' plots provided 20 days of employment per 2 jerib (0.4 ha) plot for farmers in their home villages. At the same time the terracing is a long-term investment into the land resources. Terracing provides an opportunity to decrease soil degradation and even to rehabilitate degraded lands. Application of improved seeds and fertilizer contribute in the establishment year to increased crop and fodder yields.

6.8 技术的弱点/缺点/风险及其克服方法

土地使用者认为的弱点/缺点/风险 如何克服它们?
The implementation costs are high and land users state that it is impossible for them to cover establishment costs on their own.
Farmers expectations partly exceeded the actual yield harvested from the terraces in the first years after the implementation.
Both men and women from households that have implemened terraces state that during the establishment year the household experiences an increased workload, that is not well compatible with other on-going household / farm activities.
The production area for annual crops only is slighty reduced. So far not all farmers seem to use the production area fully. Intercropping with perennial plants is recommended in order to use the risers of the terraces for fodder production. Some farmers have started intercropping of Ferula as cash crop.
Sufficient own land is required. How does the amount of cropland affect the innovation readiness of a farmer? A better understanding is required on farmers willingness to take a risk for investing in a new SLM technology, and especially terracing, and influencing factors.
编制者或其他关键资源人员认为的弱点/缺点/风险 如何克服它们?
The technology requires technical knowledge for implementation and maintenance, which is key for successful adoption, replication and upscaling. The project trained technicians to support land users with the design of terraces. While the project aided implementation of terraces has improved the general knowledge and awareness of the land users on the benefits of SLM practices, most farmers will not be able to design terraces on their own.
Technically correct design of the terrace presents a challenge and might not be always achieved. Forward sloping terrace benches may lead to channeled runoff and have the risk of rills and gully formation.
There is an attribution gap regarding the increased wheat yields, especially with regard to individual contribution of the terraces, the application of improved seeds and the fertilizer, and the combined effects (role of terraces in making improved seed and fertilizer application effective). A cost benefit analysis (CBA) needs to be conducted to determine short- and long-term returns of the SLM technology. On farm trials are necessary for assessing impacts of the different measures (agricultural, vegetative and structural measures) before-and-after, as well as with-without the SLM technology.
Terrace maintenance is crucial. If not maintained properly for a longer period of time, the damaged terrace can lead to further land degradation through channeled runoff, sever erosion and possible risks of disaster for the surrounding settlements on the slopes.
The technology is established mainly by better-off households, which own more land than the average SLM implementer.

7. 参考和链接

7.1 信息的方法/来源

  • 与土地使用者的访谈

Focus group discussions (FGD) were organized by the CDE team to collect information from SLM implementers. Total of 26 land users who have implemented terraces participated in the FGDs held in the three villages of Sari Joy, Jawaz Khana and Dashti Mirzai.
Interviews were conducted by the HAFL team to collect information from persons representing all the three study villages. Very detailed interviews were conducted with 74 persons interested in terrace implementation, of which 46 persons are from households that already have implemented terraces.

  • 与SLM专业人员/专家的访谈

The technical staff of Tdh LIPT Project in Rustaq, responsible for the implementation of the technology were consulted on a number of occasions during the compilation of this material.

  • 根据报告和其他现有文档进行编译

Information provided in the reports of Tdh LIPT Project in Rustaq served as an initial source of information during the preparatory phase and also solidifying the description of the technology and area of implementation. Other background papers on Afghanistan were referred to for general information on agriculture and natural resource management in Afghanistan.

(现场)数据是什么时候汇编的?:

17/10/2016

模块