This is an outdated, inactive version of this case. Go to the current version.
Technologies
Inactive

Vegetated buffer strips [Italy]

Fasce tampone boscate

technologies_1646 - Italy

Completeness: 82%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:
SLM specialist:

Morari Francesco

francesco.morari@unipd.it

University of Padova

Via 8 Febbraio 1848, 2, 35122 Padova PD, Italy

Italy

Name of project which facilitated the documentation/ evaluation of the Technology (if relevant)
Preventing and Remediating degradation of soils in Europe through Land Care (EU-RECARE )
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
University of Padova (UNIPD) - Italy

1.3 Conditions regarding the use of data documented through WOCAT

When were the data compiled (in the field)?

20/10/2014

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Ja

1.5 Reference to Questionnaire(s) on SLM Approaches

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

Buffer vegetation of agricultural land bordering to prevent nonpoint surface water pollution and soil erosion

2.2 Detailed description of the Technology

Description:

Vegetated buffer strips are agricultural areas with permanent vegetation designed to prevent surface water pollution and minimize soil erosion. In the Veneto region they are generally used along streams, canals and roads and can be composed of grass, hedges, trees or their combination. Buffer strips were a major component of agricultural landscape that has been replaced by intensive monoculture practices by increasing tillable areas. In recent years, the re-introduction of buffer zones in the Venetian plain (and generally in the whole territory of the region) has been supported as an agri-environmental measure for a sustainable land management.

Purpose of the Technology: Vegetated buffer strips, recently promoted by the regional government, are an efficient and economical way to improve surface water quality by agricultural nonpoint source pollution. Farmers take advantage of using buffer strips to help control soil erosion and sediment loss, stabilize riverbanks and reduce flood damage to crops. The continuous soil cover and diversification of habitats improve agroecosystem biodiversity and diversification of farmers income.

Establishment / maintenance activities and inputs: Vegetated buffer strips are generally composed of a shrub or tree belt of 1 m combined with an herbaceous band of 5 m, usually placed on the sides of cultivated fields in order to maximise their depuration efficacy as well as ensure crop production. Their function to reduce water pollution is optimal if arranged along a water course in order to intercept suspended solids and sediment-bound nutrients.

Natural / human environment: Adopting vegetated buffer strips achieves several environmental benefits with a low initial economic investment. The agroecosystem biodiversity is improved by the creation of continuous buffers that provide food, nesting cover, shaded environment and connecting corridors from one habitat to another to wildlife species, while the continuous soil cover with herbaceous and woody plants enhances soil protection and below-ground biodiversity. Water resources benefit from reduced nutrient supply and sediments that cause excessive growth of algae and diminish oxygen level of the water. Vegetated buffer strips, thanks to the maintenance and differentiation of species in the territory, enhance the quality of life through the improvement of agricultural landscape.

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Italy

Region/ State/ Province:

Italy

Further specification of location:

Veneto region

2.6 Date of implementation

If precise year is not known, indicate approximate date:
  • 10-50 years ago

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • during experiments/ research

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • reduce, prevent, restore land degradation

3.2 Current land use type(s) where the Technology is applied

Cropland

Cropland

  • Annual cropping
Main crops (cash and food crops):

Major cash crop: Maize
Other crops: Wheat, soybean

Comments:

Major land use problems (compiler’s opinion): Soils in the low Venetian plain of the Veneto region generally suffer from a loss of soil organic matter (SOM) that is strongly affected by their natural texture and climatic conditions. Moreover, in the last 50 years intensive tillage practices contributed to a further SOM decrease, estimated at 0.02-0.58 t/ha/y of carbon. The introduction of monoculture worsened the agro-ecosystem habitats and reduced soil biodiversity.

Major land use problems (land users’ perception): Decrease of productivity and the need of higher inputs of fertiliser.

3.3 Further information about land use

Water supply for the land on which the Technology is applied:
  • mixed rainfed-irrigated
Comments:

Water supply: rainfed, full irrigation

Number of growing seasons per year:
  • 1
Specify:

Longest growing period in days: 210 Longest growing period from month to month: March to OctoberSecond longest growing period in days: 180

3.4 SLM group to which the Technology belongs

  • cross-slope measure

3.5 Spread of the Technology

Specify the spread of the Technology:
  • evenly spread over an area
If the Technology is evenly spread over an area, indicate approximate area covered:
  • 100-1,000 km2

3.6 SLM measures comprising the Technology

vegetative measures

vegetative measures

  • V1: Tree and shrub cover
Comments:

Main measures: vegetative measures

Type of vegetative measures: aligned: -linear

3.7 Main types of land degradation addressed by the Technology

soil erosion by water

soil erosion by water

  • Wt: loss of topsoil/ surface erosion
  • Wr: riverbank erosion
biological degradation

biological degradation

  • Bh: loss of habitats
water degradation

water degradation

  • Hp: decline of surface water quality
Comments:

Main type of degradation addressed: Wr: riverbank erosion, Bh: loss of habitats, Hp: decline of surface water quality

Secondary types of degradation addressed: Wt: loss of topsoil / surface erosion

Main causes of degradation: soil management (lack of organic input with fertilizations), population pressure (High demand for agricultural products and competition for land in densely populated area)

Secondary causes of degradation: crop management (annual, perennial, tree/shrub) (crop monoculture instead of crop rotation), deforestation / removal of natural vegetation (incl. forest fires) (mechanisation)

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • prevent land degradation
  • reduce land degradation
Comments:

Main goals: prevention of land degradation

Secondary goals: mitigation / reduction of land degradation

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

Author:

Nicola Dal Ferro

4.2 Technical specifications/ explanations of technical drawing

An interposed area between the cropland and a water course is designed to intercept runoff and reduce surface water pollution (suspended solids, nutrients etc.).

Location: Veneto region

Technical knowledge required for field staff / advisors: moderate

Technical knowledge required for land users: moderate

Main technical functions: control of dispersed runoff: retain / trap, control of dispersed runoff: impede / retard, stabilisation of soil (eg by tree roots against land slides), improvement of water quality, buffering / filtering water, sediment retention / trapping, sediment harvesting, spatial arrangement and diversification of land use

Secondary technical functions: control of concentrated runoff: retain / trap, control of concentrated runoff: impede / retard, improvement of ground cover, increase of surface roughness, increase in organic matter, increase in nutrient availability (supply, recycling,…)

Aligned: -linear
Vegetative material: T : trees / shrubs
Spacing between rows / strips / blocks (m): 3-5
Vertical interval within rows / strips / blocks (m): 1-3

Trees/ shrubs species: oak, maple, hornbeam, willow, etc.

Grass species: mixed species

4.3 General information regarding the calculation of inputs and costs

other/ national currency (specify):

Euro €

Indicate exchange rate from USD to local currency (if relevant): 1 USD =:

0.8

Indicate average wage cost of hired labour per day:

21.00

4.4 Establishment activities

Activity Type of measure Timing
1. Planning, mulching, soli preparation, fertilisation Vegetative
2. Purchase of seedlings and planting Vegetative
3. Grass strip establishment Vegetative
4. Machinery for mowing, pruning Vegetative

4.5 Costs and inputs needed for establishment

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour Planning, mulching, soli preparation, fertilisation ha 1.0 306.0 306.0
Labour Planting ha 1.0 2.5 2.5
Labour Grass strip establishment ha 1.0 152.0 152.0
Equipment Machinery for mowing, pruning ha 1.0 4000.0 4000.0
Plant material Seedlings ha 1.0 119.0 119.0
Fertilizers and biocides Fertilizer ha 1.0 14.0 14.0
Total costs for establishment of the Technology 4593.5

4.6 Maintenance/ recurrent activities

Activity Type of measure Timing/ frequency
1. Pruning, replanting, additional irrigation Vegetative
2. Grass strip maintenance Vegetative

4.7 Costs and inputs needed for maintenance/ recurrent activities (per year)

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour Pruning, replanting, additional irrigation ha 1.0 127.0 127.0
Labour Grass strip maintenance ha 1.0 127.0 127.0
Total costs for maintenance of the Technology 254.0

4.8 Most important factors affecting the costs

Describe the most determinate factors affecting the costs:

Establishment costs (purchase of seedlings and planting) are the most important. After the establishment of buffer strip, costs are less relevant due to little work required for maintenance.

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Agro-climatic zone
  • sub-humid

Thermal climate class: temperate

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • coarse/ light (sandy)
  • medium (loamy, silty)
Topsoil organic matter:
  • medium (1-3%)
  • low (<1%)
If available, attach full soil description or specify the available information, e.g. soil type, soil PH/ acidity, Cation Exchange Capacity, nitrogen, salinity etc.

Soil fertility is low-medium
Soil drainage/infiltration is medium
Soil water storage capacity is medium

5.4 Water availability and quality

Ground water table:

< 5 m

Availability of surface water:

good

Water quality (untreated):

good drinking water

Comments and further specifications on water quality and quantity:

Ground water table: <5m a.s.l. (The area surrounding the Venice lagoon (1240 km2) is even below the sea level (down to -2 m) and currently cultivated due to land reclamation. As a result water table is kept artificially low)
Water quality (untreted): Good drinking water (groundwater) and for agricultural use only (surface water can be used for agricultural purposes but not as drinking water)

5.5 Biodiversity

Species diversity:
  • medium
Comments and further specifications on biodiversity:

High population density, infrastructures and intensive agriculture practices affect the state of biodiversity.

5.6 Characteristics of land users applying the Technology

Market orientation of production system:
  • commercial/ market
Off-farm income:
  • 10-50% of all income
Relative level of wealth:
  • average
Individuals or groups:
  • individual/ household
Level of mechanization:
  • mechanized/ motorized
Gender:
  • men
Indicate other relevant characteristics of the land users:

Land users applying the Technology are mainly common / average land users

Difference in the involvement of women and men: Farmers in the Veneto region are traditionally males due to historical and cultural reasons.

Population density: 200-500 persons/km2

Annual population growth: 0.5% - 1%

5.7 Average area of land owned or leased by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
  • small-scale

5.8 Land ownership, land use rights, and water use rights

Land use rights:
  • individual

5.9 Access to services and infrastructure

health:
  • poor
  • moderate
  • good
education:
  • poor
  • moderate
  • good
technical assistance:
  • poor
  • moderate
  • good
employment (e.g. off-farm):
  • poor
  • moderate
  • good
markets:
  • poor
  • moderate
  • good
energy:
  • poor
  • moderate
  • good
roads and transport:
  • poor
  • moderate
  • good
drinking water and sanitation:
  • poor
  • moderate
  • good
financial services:
  • poor
  • moderate
  • good

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

wood production

decreased
increased
Quantity before SLM:

0 t/100 linear metres

Quantity after SLM:

1-1.5/100 linear metres

product diversity

decreased
increased
Water availability and quality

drinking water availability

decreased
increased
Income and costs

diversity of income sources

decreased
increased

Socio-cultural impacts

cultural opportunities

reduced
improved

recreational opportunities

reduced
improved

conflict mitigation

worsened
improved

Ecological impacts

Water cycle/ runoff

water quality

decreased
increased

surface runoff

increased
decreased
Soil

soil cover

reduced
improved

soil loss

increased
decreased

nutrient cycling/ recharge

decreased
increased
Biodiversity: vegetation, animals

biomass/ above ground C

decreased
increased

plant diversity

decreased
increased

habitat diversity

decreased
increased

6.2 Off-site impacts the Technology has shown

water availability

decreased
increased

downstream flooding

increased
reduced

groundwater/ river pollution

increased
reduced

buffering/ filtering capacity

reduced
improved

damage on neighbours' fields

increased
reduced

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Gradual climate change

Gradual climate change
Season Type of climatic change/ extreme How does the Technology cope with it?
annual temperature increase well

Climate-related extremes (disasters)

Meteorological disasters
How does the Technology cope with it?
local rainstorm well
Climatological disasters
How does the Technology cope with it?
drought not well

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

slightly negative

Long-term returns:

positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

positive

Long-term returns:

positive

6.5 Adoption of the Technology

Of all those who have adopted the Technology, how many have did so spontaneously, i.e. without receiving any material incentives/ payments?
  • 50-90%
Comments:

50% of land user families have adopted the Technology with external material support

Comments on acceptance with external material support: On average it was estimated that, among farmers adopting the technology, ca. half of them benefited of incentives.

50% of land user families have adopted the Technology without any external material support

Comments on spontaneous adoption: On average it was estimated that, among farmers adopting the technology, ca. half of them benefited of incentives.

6.7 Strengths/ advantages/ opportunities of the Technology

Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
protects soil from water erosion

How can they be sustained / enhanced? long-term maintenance of buffer zones and soil cover
protects surface water quality

How can they be sustained / enhanced? combination with other sustainable technologies (e.g. reduction of pesticides). Spread over larger areas
enhances agro-ecosystem biodiversity

How can they be sustained / enhanced? improvement of connecting corridors between habitats
diversifies farmer's production

How can they be sustained / enhanced? improve farmers' education
little costs compared to environmenmtal benefits

How can they be sustained / enhanced? support farmers on decision making

6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them

Weaknesses/ disadvantages/ risks in the land user’s view How can they be overcome?
sometimes difficult to adjust crop production requirements with buffer strip occupation of space support farmers on decision making
Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view How can they be overcome?
time-dependent buffer performance Monitoring saturation-effect conditions in the medium, long-term
low efficacy if the technology is maintained in the short-term improve effectiveness of subsidies to keep the technology in the long-term; increase farmers awareness on soil and water benefits

7. References and links

7.2 References to available publications

Title, author, year, ISBN:

Programma di sviluppo rurale per il veneto 2007-2013, Regione Veneto, 2007. Dipartimento Agricoltura e Sviluppo Rurale.

Links and modules

Expand all Collapse all

Modules