Technologies

Эффективное повышение плодородия почвы через производство и применение высококачественного компоста –альтернативного навозу органического удобрения [Tajikistan]

technologies_3667 - Tajikistan

Completeness: 69%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:
{'additional_translations': {}, 'value': 'Gulniso Nekushoeva', 'user_id': '1860', 'unknown_user': False, 'template': 'raw'}
SLM specialist:

Tajikistan

{'additional_translations': {}, 'value': 1042, 'label': 'Name of project which facilitated the documentation/ evaluation of the Technology (if relevant)', 'text': 'Environmental Land Management and Rural Livelihoods (ELMAR)', 'template': 'raw'} {'additional_translations': {}, 'value': 335, 'label': 'Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)', 'text': 'Soil Science Research Institute (Soil Science Research Institute) - Tajikistan', 'template': 'raw'}

1.3 Conditions regarding the use of data documented through WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Yes

1.4 Declaration on sustainability of the described Technology

Is the Technology described here problematic with regard to land degradation, so that it cannot be declared a sustainable land management technology?

No

2. Description of the SLM Technology

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Tajikistan

Specify the spread of the Technology:
  • applied at specific points/ concentrated on a small area

2.6 Date of implementation

Indicate year of implementation:

2007

If precise year is not known, indicate approximate date:
  • less than 10 years ago (recently)

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • through projects/ external interventions

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • improve production
  • reduce, prevent, restore land degradation
  • create beneficial economic impact

3.2 Current land use type(s) where the Technology is applied

Cropland

Cropland

  • Annual cropping
Number of growing seasons per year:
  • 2
Other

Other

3.4 Water supply

Water supply for the land on which the Technology is applied:
  • mixed rainfed-irrigated

3.5 SLM group to which the Technology belongs

  • improved ground/ vegetation cover
  • integrated soil fertility management
  • waste management/ waste water management

3.6 SLM measures comprising the Technology

agronomic measures

agronomic measures

  • A1: Vegetation/ soil cover
  • A2: Organic matter/ soil fertility
structural measures

structural measures

  • S4: Level ditches, pits
management measures

management measures

  • M6: Waste management (recycling, re-use or reduce)

3.7 Main types of land degradation addressed by the Technology

chemical soil deterioration

chemical soil deterioration

  • Cn: fertility decline and reduced organic matter content (not caused by erosion)
physical soil deterioration

physical soil deterioration

  • Pc: compaction
  • Pu: loss of bio-productive function due to other activities
biological degradation

biological degradation

  • Bq: quantity/ biomass decline
  • Bl: loss of soil life
water degradation

water degradation

  • Ha: aridification

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • reduce land degradation
  • restore/ rehabilitate severely degraded land

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

{'additional_translations': {}, 'content_type': 'image/jpeg', 'preview_image': '/media/12/6/126fbdb4-20b3-4bb0-a23d-79025e9d03dc.jpg', 'key': 'Technical drawing', 'value': '/media/e4/6/e461ca0d-3383-42e2-81dc-7d1c8000a8fa.jpg', 'template': 'raw'}
Date:

25/03/2018

4.2 General information regarding the calculation of inputs and costs

Specify how costs and inputs were calculated:
  • per Technology unit
If relevant, indicate exchange rate from USD to local currency (e.g. 1 USD = 79.9 Brazilian Real): 1 USD =:

4.83

4.4 Costs and inputs needed for establishment

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour None None 1.0 80.0 80.0
Equipment None None 1.0 20.0 20.0 100.0
Equipment None None 1.0 15.0 15.0 100.0
Equipment None None 1.0 25.0 25.0 100.0
Construction material None None 5.0 60.0 300.0
Construction material None None 0.3 10.0 3.0
Total costs for establishment of the Technology 443.0
Total costs for establishment of the Technology in USD 91.72

4.6 Costs and inputs needed for maintenance/ recurrent activities (per year)

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour None
Labour None None 24.0 4.0 96.0 100.0
Labour None None 16.0 8.0 128.0 100.0
Construction material None None 3.0 20.0 60.0
Total costs for maintenance of the Technology 284.0
Total costs for maintenance of the Technology in USD 58.8

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Specify average annual rainfall (if known), in mm:

808.00

Agro-climatic zone
  • semi-arid

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
Indicate if the Technology is specifically applied in:
  • concave situations

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • medium (loamy, silty)
Soil texture (> 20 cm below surface):
  • medium (loamy, silty)
Topsoil organic matter:
  • medium (1-3%)
  • low (<1%)

5.4 Water availability and quality

Ground water table:

5-50 m

Availability of surface water:

good

Water quality (untreated):

good drinking water

Is water salinity a problem?

No

Is flooding of the area occurring?

No

5.5 Biodiversity

Species diversity:
  • medium
Habitat diversity:
  • medium

5.6 Characteristics of land users applying the Technology

Sedentary or nomadic:
  • Sedentary
Market orientation of production system:
  • subsistence (self-supply)
  • mixed (subsistence/ commercial)
Off-farm income:
  • 10-50% of all income
Relative level of wealth:
  • poor
  • average
Individuals or groups:
  • individual/ household
Level of mechanization:
  • manual work
Gender:
  • women
  • men
Age of land users:
  • middle-aged
  • elderly

5.7 Average area of land used by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
  • medium-scale
  • large-scale

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • state
Land use rights:
  • communal (organized)
  • leased
Water use rights:
  • communal (organized)

5.9 Access to services and infrastructure

health:
  • poor
  • moderate
  • good
education:
  • poor
  • moderate
  • good
technical assistance:
  • poor
  • moderate
  • good
employment (e.g. off-farm):
  • poor
  • moderate
  • good
markets:
  • poor
  • moderate
  • good
energy:
  • poor
  • moderate
  • good
roads and transport:
  • poor
  • moderate
  • good
drinking water and sanitation:
  • poor
  • moderate
  • good
financial services:
  • poor
  • moderate
  • good

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

crop quality

decreased
increased

risk of production failure

increased
decreased
Income and costs

farm income

decreased
increased

Socio-cultural impacts

food security/ self-sufficiency

reduced
improved

health situation

worsened
improved

cultural opportunities

reduced
improved

SLM/ land degradation knowledge

reduced
improved

Ecological impacts

Water cycle/ runoff

water quality

decreased
increased

harvesting/ collection of water

reduced
improved
Soil

soil moisture

decreased
increased

soil cover

reduced
improved

nutrient cycling/ recharge

decreased
increased

soil organic matter/ below ground C

decreased
increased
Biodiversity: vegetation, animals

Vegetation cover

decreased
increased

biomass/ above ground C

decreased
increased
Climate and disaster risk reduction

drought impacts

increased
decreased

emission of carbon and greenhouse gases

increased
decreased

micro-climate

worsened
improved

6.2 Off-site impacts the Technology has shown

groundwater/ river pollution

increased
reduced

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Gradual climate change

Gradual climate change
Season increase or decrease How does the Technology cope with it?
seasonal temperature winter increase well
seasonal rainfall winter increase well

Climate-related extremes (disasters)

Climatological disasters
How does the Technology cope with it?
heatwave moderately
cold wave not well
extreme winter conditions moderately
drought not well

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

positive

Long-term returns:

very positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

positive

Long-term returns:

very positive

6.5 Adoption of the Technology

  • 11-50%
Of all those who have adopted the Technology, how many did so spontaneously, i.e. without receiving any material incentives/ payments?
  • 11-50%

6.6 Adaptation

Has the Technology been modified recently to adapt to changing conditions?

Yes

If yes, indicate to which changing conditions it was adapted:
  • climatic change/ extremes

7. References and links

7.1 Methods/ sources of information

  • field visits, field surveys
  • interviews with land users
  • interviews with SLM specialists/ experts
When were the data compiled (in the field)?

2007

Links and modules

Expand all Collapse all

Modules