Technologies

Multi-Canopy Agroforestry [Uganda]

Pito Yen Ki Labolo Ki mwanyi Ka ngig yat mapatpat

technologies_2148 - Uganda

Completeness: 94%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

land user:

Otto Bosco

+256773392188

Omoro District Farmers

Ongako sub county, Omoro District

Uganda

Name of project which facilitated the documentation/ evaluation of the Technology (if relevant)
Scaling-up SLM practices by smallholder farmers (IFAD)
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Uganda Landcare Network (ULN) - Uganda

1.3 Conditions regarding the use of data documented through WOCAT

When were the data compiled (in the field)?

11/05/2017

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Yes

1.4 Declaration on sustainability of the described Technology

Is the Technology described here problematic with regard to land degradation, so that it cannot be declared a sustainable land management technology?

No

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

Trees of various sizes are integrated with crops such as coffee and/or banana, maize and beans such that each group of plants occupies a specific vertical position and competition for vertical space is minimized

2.2 Detailed description of the Technology

Description:

In multicanopy agroforestry, annual crops that include maize, beans and shrub species such Calliandra and Sesbania are integrated so as to occupy the lower vertical spaces. The next height is occupied by taller crops such as coffee, cocoa and bananas while the highest layer is occupied by tall trees such as Maesopsis eminii, Makhamia lutea and Ficus nantalesis. This arrangement ensures that as much land as possible is utilized.

The upper strata of a multi-layered planting is called the overstory, or canopy. The trees that make up this layer play the key role in creating the understory. The shady environment in the understory (i) Reduces evapotranspiration (evaporation of water through the leaves and branches of the plant), conserving moisture in the plants and reducing water use (ii) Buffers crops from temperature extremes and fluctuations (iii) Protects crops from winds (iv) Suppresses many invasive problem weeds, which tend to prefer open conditions and full sun and (v) Supports a range of beneficial soil microlife that do not thrive in the open. On the other hand, understory crops should (i) tolerate partial shade (ii) exploit, at least partially, different soil horizons than the overstory trees (iii) be less tall than the overstory trees when mature (although some trees may be planned to use the shade as seedlings, but eventually overtake and become part of the upper layer) (iv) be less susceptible than the overstory trees to diseases they may have in common and (v) not involve damage to the overstory trees during cultivation or harvest of understory crops. The most important consideration when implementing this technology is that the various components of the plant system have to be compatible.

Management should be done to reduce competition for vertical and horizontal space. The number of trees per acre is 50% less compared with timber or fruit trees planted alone. Spacing should be planned to provide the most optimal environment for the understory, and minimize competition for space, light, and nutrients. The species growth rate, rooting patterns, and other factors should be taken into account when planning.

Required management activities include weeding, pruning, and thinning. Weeding is usually done twice every season mainly to take care of the annual crops such as maize and beans. Pruning is done whenever the farmer sees that light intensity from the upper canopy is no longer enough to support the understory crops. Usually, once a year is appropriate. Pruning is also done to reduce the risk of old branches falling and damaging crops and other farm structures. Thinning is done to reduce the number of seedlings from the soil ground.

The technology increases biodiversity on-farm, and protects the environment from degradation, soil loss, and wind break. This diversity has the advantage of reducing pest and disease incidence. The mixed fruits and trees provide timber and fuel wood, shade for coffee and banana, and keep the soil moist. It also acts as wind break which protects crops, farm structures and reduce soil loss by wind. It is a source of income to land user, provides food, improves the ecosystem, and leguminous plants fix nitrogen in the soil.

The technology is generally cheap to establish because the main inputs needed include tree seedlings, which were raised by the land user with the exception of the coffee seedlings and banana suckers which were obtained from outside. Labour is usually entirely family-based. The economic benefits are difficult to quantify due to the complex nature of the interaction among system components.

The potential limitations of understory intercropping include (i) Shortage of scientific study and information about tree/understory crop interactions (ii) Risk of unforeseen competition or allelopathic effects (iii) Greater complexity in management of multiple species and multiple products and (iv) Potential damage to overstory from harvest of the understory, or vice-versa.

Implementing multi-canopy agroforestry requires skills that are usually developed over long periods of time by farmers who observe the various interactions among the components and manage (especially the trees) to reduce the competition without compromising the benefits.

2.3 Photos of the Technology

2.4 Videos of the Technology

Date:

24/4/2017

Location:

Omoro

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Uganda

Region/ State/ Province:

Northern

Further specification of location:

Omoro District

2.6 Date of implementation

Indicate year of implementation:

1998

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • as part of a traditional system (> 50 years)

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • improve production
  • reduce, prevent, restore land degradation
  • conserve ecosystem
  • preserve/ improve biodiversity
  • reduce risk of disasters
  • adapt to climate change/ extremes and its impacts
  • mitigate climate change and its impacts
  • create beneficial economic impact
  • create beneficial social impact

3.2 Current land use type(s) where the Technology is applied

Cropland

Cropland

  • Annual cropping
  • Perennial (non-woody) cropping
  • Tree and shrub cropping
Main crops (cash and food crops):

Banana, coffee and fruits trees, maize, beans

Forest/ woodlands

Forest/ woodlands

(Semi-)natural forests/ woodlands:
  • Selective felling
  • Dead wood/ prunings removal
Tree plantation, afforestation:
  • Mixed varieties
Products and services:
  • Timber
  • Fuelwood
  • Fruits and nuts
  • Nature conservation/ protection
  • Protection against natural hazards

3.3 Further information about land use

Water supply for the land on which the Technology is applied:
  • rainfed
Number of growing seasons per year:
  • 2

3.4 SLM group to which the Technology belongs

  • agroforestry
  • windbreak/ shelterbelt

3.5 Spread of the Technology

Specify the spread of the Technology:
  • evenly spread over an area
If the Technology is evenly spread over an area, indicate approximate area covered:
  • < 0.1 km2 (10 ha)

3.6 SLM measures comprising the Technology

agronomic measures

agronomic measures

  • A1: Vegetation/ soil cover
  • A2: Organic matter/ soil fertility
vegetative measures

vegetative measures

  • V1: Tree and shrub cover
  • V2: Grasses and perennial herbaceous plants
management measures

management measures

  • M3: Layout according to natural and human environment
  • M5: Control/ change of species composition

3.7 Main types of land degradation addressed by the Technology

soil erosion by water

soil erosion by water

  • Wt: loss of topsoil/ surface erosion
soil erosion by wind

soil erosion by wind

  • Et: loss of topsoil
physical soil deterioration

physical soil deterioration

  • Pc: compaction
  • Pi: soil sealing
  • Pw: waterlogging

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • prevent land degradation
  • reduce land degradation

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

Author:

Food and Nutrition Bulletin Volume 07, Number 3, 1985

Date:

24/4/2017

4.2 Technical specifications/ explanations of technical drawing

- 20 to 30 meters between trees
- 3 meters between between coffee or banana plants
- Beans or soybeans can be planted between coffee/banana plants
- Trees are pruned to leave about one half of the crown

4.3 General information regarding the calculation of inputs and costs

Specify how costs and inputs were calculated:
  • per Technology area
Indicate size and area unit:

2 acres

other/ national currency (specify):

Uganda Shillings

Indicate exchange rate from USD to local currency (if relevant): 1 USD =:

3500.0

Indicate average wage cost of hired labour per day:

5000

4.4 Establishment activities

Activity Type of measure Timing
1. Preparing of the nursery bed Structural At the beginning of the season
2. Transplanting Vegetative At the start of the rainy season
3. Weeding Agronomic One month after planting
4. Prunning of trees Agronomic Once every year
5. Harvesting of annual crops Agronomic Every season

4.5 Costs and inputs needed for establishment

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour Preparing of the nursery bed Mandays 30.0 5000.0 150000.0 100.0
Labour Transplanting Mandays 12.0 5000.0 60000.0 100.0
Labour Weeding Mandays 12.0 5000.0 60000.0 100.0
Labour Prunning of trees Mandays 15.0 5000.0 75000.0 100.0
Plant material Seedlings Number 100.0 3000.0 300000.0 100.0
Total costs for establishment of the Technology 645000.0
If land user bore less than 100% of costs, indicate who covered the remaining costs:

The cost is generally handled by the family

4.6 Maintenance/ recurrent activities

Activity Type of measure Timing/ frequency
1. Weeding Agronomic Every season
2. Pruning Agronomic Once a year
Comments:

Most activities are managed by the family

4.7 Costs and inputs needed for maintenance/ recurrent activities (per year)

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour Weeding Mandays 30.0 5000.0 150000.0 100.0
Labour Pruning Mandays 15.0 5000.0 75000.0 100.0
Total costs for maintenance of the Technology 225000.0

4.8 Most important factors affecting the costs

Describe the most determinate factors affecting the costs:

Pruning becasue this involves aiming at high tree branches, which is risky and therefore, costly

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Agro-climatic zone
  • humid

One long major rainy season with simple dry spell in between and followed by dry season from December to March

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
Indicate if the Technology is specifically applied in:
  • not relevant
Comments and further specifications on topography:

The land is generally flat and the technology take place toward the valley

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • medium (loamy, silty)
Soil texture (> 20 cm below surface):
  • medium (loamy, silty)
Topsoil organic matter:
  • medium (1-3%)

5.4 Water availability and quality

Ground water table:

5-50 m

Availability of surface water:

medium

Water quality (untreated):

for agricultural use only (irrigation)

Is water salinity a problem?

No

Is flooding of the area occurring?

No

5.5 Biodiversity

Species diversity:
  • medium
Habitat diversity:
  • medium

5.6 Characteristics of land users applying the Technology

Sedentary or nomadic:
  • Sedentary
Market orientation of production system:
  • subsistence (self-supply)
Off-farm income:
  • > 50% of all income
Relative level of wealth:
  • average
Individuals or groups:
  • individual/ household
Level of mechanization:
  • manual work
Gender:
  • women
  • men
Age of land users:
  • youth
  • middle-aged
Indicate other relevant characteristics of the land users:

Small animal keeping and farmer managed natural regeneration.

5.7 Average area of land owned or leased by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
  • medium-scale
Comments:

All space within the plot is utilized

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • individual, not titled
Land use rights:
  • individual
Water use rights:
  • communal (organized)

5.9 Access to services and infrastructure

health:
  • poor
  • moderate
  • good
education:
  • poor
  • moderate
  • good
employment (e.g. off-farm):
  • poor
  • moderate
  • good
markets:
  • poor
  • moderate
  • good
energy:
  • poor
  • moderate
  • good
roads and transport:
  • poor
  • moderate
  • good
drinking water and sanitation:
  • poor
  • moderate
  • good
financial services:
  • poor
  • moderate
  • good

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

wood production

decreased
increased

forest/ woodland quality

decreased
increased

non-wood forest production

decreased
increased

risk of production failure

increased
decreased

product diversity

decreased
increased

production area

decreased
increased

land management

hindered
simplified

energy generation

decreased
increased
Water availability and quality

drinking water availability

decreased
increased

drinking water quality

decreased
increased

water availability for livestock

decreased
increased

water quality for livestock

decreased
increased
Income and costs

expenses on agricultural inputs

increased
decreased

farm income

decreased
increased

diversity of income sources

decreased
increased

economic disparities

increased
decreased

workload

increased
decreased

Socio-cultural impacts

food security/ self-sufficiency

reduced
improved

health situation

worsened
improved

SLM/ land degradation knowledge

reduced
improved

Ecological impacts

Water cycle/ runoff

surface runoff

increased
decreased

excess water drainage

reduced
improved

groundwater table/ aquifer

lowered
recharge

evaporation

increased
decreased
Soil

soil moisture

decreased
increased

soil cover

reduced
improved

soil loss

increased
decreased

soil accumulation

decreased
increased

soil crusting/ sealing

increased
reduced

soil compaction

increased
reduced

nutrient cycling/ recharge

decreased
increased

soil organic matter/ below ground C

decreased
increased
Biodiversity: vegetation, animals

Vegetation cover

decreased
increased

biomass/ above ground C

decreased
increased

plant diversity

decreased
increased

pest/ disease control

decreased
increased
Climate and disaster risk reduction

flood impacts

increased
decreased

landslides/ debris flows

increased
decreased

impacts of cyclones, rain storms

increased
decreased

fire risk

increased
decreased

wind velocity

increased
decreased

micro-climate

worsened
improved

6.2 Off-site impacts the Technology has shown

groundwater/ river pollution

increased
reduced

buffering/ filtering capacity

reduced
improved

wind transported sediments

increased
reduced

impact of greenhouse gases

increased
reduced
Comments regarding impact assessment:

No down stream flooding

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Climate-related extremes (disasters)

Meteorological disasters
How does the Technology cope with it?
tropical storm very well
extra-tropical cyclone very well
local rainstorm very well
local thunderstorm very well
local hailstorm very well
local snowstorm very well
local sandstorm/ duststorm very well
local windstorm very well
tornado not known
Climatological disasters
How does the Technology cope with it?
heatwave very well
cold wave not known
extreme winter conditions not known
drought very well
forest fire very well
land fire very well
Hydrological disasters
How does the Technology cope with it?
general (river) flood very well
flash flood very well
storm surge/ coastal flood not known
landslide not known
avalanche not known
Biological disasters
How does the Technology cope with it?
epidemic diseases very well
insect/ worm infestation very well

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

slightly positive

Long-term returns:

positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

positive

Long-term returns:

very positive

6.5 Adoption of the Technology

  • 1-10%
Of all those who have adopted the Technology, how many have did so spontaneously, i.e. without receiving any material incentives/ payments?
  • 90-100%

6.6 Adaptation

Has the Technology been modified recently to adapt to changing conditions?

No

6.7 Strengths/ advantages/ opportunities of the Technology

Strengths/ advantages/ opportunities in the land user’s view
Diversify the food and income sources of the household
Protection of the system from climate extremes especially drought and strong winds
Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
Improved and sustainable land management

6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them

Weaknesses/ disadvantages/ risks in the land user’s view How can they be overcome?
High labour requirements coupled with shortage of labour due to rural-urban migration of the youth

7. References and links

7.1 Methods/ sources of information

  • field visits, field surveys

2

  • interviews with land users

2

  • interviews with SLM specialists/ experts

1

7.2 References to available publications

Title, author, year, ISBN:

Agroforestry coffee practices in relation to productivity and erosion control, 2010

Available from where? Costs?

https://pdfs.semanticscholar.org/482c/b4d3cebf27f52f638ec10255f55724736a83.pdf?_ga=2.82063123.426798158.1589367611-1455465451.1589367611

7.3 Links to relevant information which is available online

Title/ description:

Inside Agroforestry

URL:

https://nac.unl.edu/documents/insideagroforestry/IA_vol23issue1.pdfIn

Links and modules

Expand all Collapse all

Modules