Technologies

Seedling [Spain]

Semillado

technologies_1266 - Spain

Completeness: 57%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:
{'additional_translations': {}, 'value': 'Artemi Cerda', 'user_id': '87', 'unknown_user': False, 'template': 'raw'}
SLM specialist:
{'additional_translations': {}, 'value': 'Artemi Cerda', 'user_id': '87', 'unknown_user': False, 'template': 'raw'}
{'additional_translations': {}, 'value': 529, 'label': 'Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)', 'text': 'Universidad de Valencia (Universidad de Valencia) - Spain', 'template': 'raw'}

1.3 Conditions regarding the use of data documented through WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Yes

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

Based on post-fire assessment and in areas more prone to erosion, the seedlings will provide a short term soil cover that buffers the raindrop impact and decreases soil erosion.

2.2 Detailed description of the Technology

Description:

A wildfire is expected for the summer 2015 in the Caroig mountain range. The area was afforested by Aleppo pines during the 20th century and nowadays the landscape is composed of mature Aleppo pines at different stages of development and shrub vegetation in the understorey.

The research team of the University of Valencia will implement an experiment based on the seedling technique in order to reduce post-fire soil losses.

Purpose of the Technology: Seedlings in a post-fire environment will provide soil cover after the seed establishment, decreasing raindrops energy on soil surface and thus soil erosion.

Establishment / maintenance activities and inputs: The seeds will be obtained from greenhouse markets nearby (25 km) the research area. Festuca sp. will be used as the main species.

Natural / human environment: The Aleppo pine trees in the region are typically planted as mono-culture for wood production. The landscape reflects a long history of intense land management, with a mosaic of (semi-)natural and man-made agricultural (terraces) and afforested lands. Since the 1970´s, however, wildfires have increased dramatically in frequency and extent, driven primarily by socio-economic changes.

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Spain

Region/ State/ Province:

Spain

Further specification of location:

Valencia

Specify the spread of the Technology:
  • evenly spread over an area

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • reduce, prevent, restore land degradation
  • adapt to climate change/ extremes and its impacts
  • reduce impact of disasters

3.2 Current land use type(s) where the Technology is applied

Forest/ woodlands

Forest/ woodlands

  • Tree plantation, afforestation
  • Aleppo pines
Tree plantation, afforestation: Specify origin and composition of species:
  • Monoculture local variety
Products and services:
  • Timber
  • Fuelwood
  • Fruits and nuts
  • Other forest products
  • Grazing/ browsing
  • Nature conservation/ protection
  • Recreation/ tourism
  • Protection against natural hazards
Comments:

Major land use problems (compiler’s opinion): In a post-fire environment, peak runoff and soil erosion rates are expected, resulting in a decrease of on-site fertility and derived off-site effects such as loss of water quality, reservoirs water volume storage, higher risk of flooding and harm to human beings.

Major land use problems (land users’ perception): Loss of wood resources.

3.4 Water supply

Water supply for the land on which the Technology is applied:
  • rainfed

3.5 SLM group to which the Technology belongs

  • improved ground/ vegetation cover
  • ecosystem-based disaster risk reduction

3.6 SLM measures comprising the Technology

agronomic measures

agronomic measures

  • A1: Vegetation/ soil cover
vegetative measures

vegetative measures

  • V2: Grasses and perennial herbaceous plants
management measures

management measures

  • M5: Control/ change of species composition
Comments:

Secondary measures: management measures

3.7 Main types of land degradation addressed by the Technology

soil erosion by water

soil erosion by water

  • Wt: loss of topsoil/ surface erosion
Comments:

Main causes of degradation: soil management (Monoculture plantations are prone to wildfire), deforestation / removal of natural vegetation (incl. forest fires) (forest fires), Heavy / extreme rainfall (intensity/amounts) (Post-fire high intensity rainfalls promotes soil erosion)

Secondary causes of degradation: population pressure (Depopulation increase fire risk)

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • reduce land degradation
Comments:

Secondary goals: prevention of land degradation, rehabilitation / reclamation of denuded land

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

{'additional_translations': {}, 'content_type': 'image/jpeg', 'preview_image': '/media/dd/0/dd075474-9dbe-4629-8ba5-684322e5807b.jpg', 'key': 'Technical drawing', 'value': '/media/df/a/dfab7512-e7e8-4553-bcc0-88dc9173b233.jpg', 'template': 'raw'}
Technical specifications (related to technical drawing):

Experimental design of a seedling experience in a wildfire area.

Location: Valencia. Spain

Technical knowledge required for field staff / advisors: moderate (Main concern deals with the selection of the suitable areas to implement the seedling.)

Technical knowledge required for land users: moderate (Main concern deals with the selection of the suitable areas to implement the seedling.)

Main technical functions: control of raindrop splash, improvement of ground cover, increase of surface roughness, sediment retention / trapping, sediment harvesting

Secondary technical functions: control of dispersed runoff: retain / trap, control of dispersed runoff: impede / retard, control of concentrated runoff: retain / trap, control of concentrated runoff: impede / retard, control of concentrated runoff: drain / divert, reduction of slope angle, reduction of slope length, improvement of surface structure (crusting, sealing), improvement of topsoil structure (compaction), improvement of subsoil structure (hardpan), stabilisation of soil (eg by tree roots against land slides), increase in organic matter, increase in nutrient availability (supply, recycling,…), increase of infiltration, increase / maintain water stored in soil, increase of groundwater level / recharge of groundwater, water harvesting / increase water supply, water spreading, improvement of water quality, buffering / filtering water, reduction in wind speed, increase of biomass (quantity), promotion of vegetation species and varieties (quality, eg palatable fodder), control of fires, reduction of dry material (fuel for wildfires), spatial arrangement and diversification of land use

Author:

Gonzalez-Pelayo, Oscar, University of Valencia. Dept. of Geography. Blasco Ibañez 28. 46010. Valencia. Spain

4.7 Most important factors affecting the costs

Describe the most determinate factors affecting the costs:

Difficult accessibility and steep slopes will increase the costs for seeding.

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Specifications/ comments on rainfall:

Mediterranean climate with concentred precipitation in february-may and september-december months. Drought from june to september

Agro-climatic zone
  • sub-humid
  • semi-arid

Transition zone between semiarid and subhumid

Thermal climate class: tropics

Thermal climate class: subtropics

Thermal climate class: temperate

Thermal climate class: boreal

Thermal climate class: polar/arctic

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
Comments and further specifications on topography:

Slopes on average: Also steep (31-60%)

Landforms: Also hill slopes

Altitudinal zone: 650-700 meters above sea level

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • medium (loamy, silty)
Topsoil organic matter:
  • high (>3%)
If available, attach full soil description or specify the available information, e.g. soil type, soil PH/ acidity, Cation Exchange Capacity, nitrogen, salinity etc.

Soil depth on average: Very shallow (Leptosol) and shallow (Cambisol)

Soil fertility is medium

Soil drainage/infiltration is medium

Soil water storage capacity is high

5.4 Water availability and quality

Ground water table:

5-50 m

Availability of surface water:

medium

Water quality (untreated):

for agricultural use only (irrigation)

Comments and further specifications on water quality and quantity:

Availability of surface water: Few permanent water courses in the area

5.5 Biodiversity

Species diversity:
  • medium

5.6 Characteristics of land users applying the Technology

Individuals or groups:
  • groups/ community
Gender:
  • women
  • men
Indicate other relevant characteristics of the land users:

Land users applying the Technology are mainly common / average land users

5.7 Average area of land used by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
  • medium-scale

5.9 Access to services and infrastructure

health:
  • poor
  • moderate
  • good
education:
  • poor
  • moderate
  • good
technical assistance:
  • poor
  • moderate
  • good
employment (e.g. off-farm):
  • poor
  • moderate
  • good
markets:
  • poor
  • moderate
  • good
energy:
  • poor
  • moderate
  • good
roads and transport:
  • poor
  • moderate
  • good
drinking water and sanitation:
  • poor
  • moderate
  • good
financial services:
  • poor
  • moderate
  • good

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

crop quality

decreased
increased

fodder production

decreased
increased

fodder quality

decreased
increased

animal production

decreased
increased

wood production

decreased
increased

forest/ woodland quality

decreased
increased
Water availability and quality

drinking water availability

decreased
increased

Socio-cultural impacts

SLM/ land degradation knowledge

reduced
improved

conflict mitigation

worsened
improved

Ecological impacts

Water cycle/ runoff

surface runoff

increased
decreased

evaporation

increased
decreased
Soil

soil cover

reduced
improved

soil loss

increased
decreased

soil crusting/ sealing

increased
reduced

soil compaction

increased
reduced
Other ecological impacts

competition

decreased
increased

6.2 Off-site impacts the Technology has shown

downstream siltation

increased
decreased

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Gradual climate change

Gradual climate change
Season increase or decrease How does the Technology cope with it?
annual temperature increase not well

Climate-related extremes (disasters)

Meteorological disasters
How does the Technology cope with it?
local rainstorm well
local windstorm not known
Climatological disasters
How does the Technology cope with it?
drought not known
Hydrological disasters
How does the Technology cope with it?
general (river) flood not known

Other climate-related consequences

Other climate-related consequences
How does the Technology cope with it?
reduced growing period not known

6.7 Strengths/ advantages/ opportunities of the Technology

Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
It is a technology easy to apply. Main concerns deals with the area suitable for its application.

How can they be sustained / enhanced? Some researchers are sensitive to use coated seeds with surfactant to improve seed establishment.

6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them

Weaknesses/ disadvantages/ risks in the land user’s view How can they be overcome?
The seed establishment when prolonged drought periods.
Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view How can they be overcome?
Main disadvantages deals with the seed establishment after a wildfire in the usual mediterranean summer water scarcity conditions. The use of coated seeds with surfactant could improve seed establishment.

7. References and links

7.1 Methods/ sources of information

Links and modules

Expand all Collapse all

Modules