技术

Village irrigation schemes [马里]

Périmètres irrigués villageois (French)

technologies_1624 - 马里

完整性: 76%

1. 一般信息

1.2 参与该技术评估和文件编制的资源人员和机构的联系方式

关键资源人

SLM专业人员:
SLM专业人员:

Abdou Sani Mamadou

Programme d’Appui à l’agriculture Productive (PROMAP), Niamey, Niger

尼日尔

有助于对技术进行记录/评估的项目名称(如相关)
Manual of Good Practices in Small Scale Irrigation in the Sahel (GIZ )
有助于对技术进行记录/评估的机构名称(如相关)
Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) - 德国

1.3 关于使用通过WOCAT记录的数据的条件

编制者和关键资源人员接受有关使用通过WOCAT记录数据的条件。:

1.4 所述技术的可持续性声明

这里所描述的技术在土地退化方面是否存在问题,导致无法被认为是一种可持续的土地管理技术?:

2. SLM技术的说明

2.1 技术简介

技术定义:

This technique makes it possible to develop unirrigated land at low cost to meet the demand for higher agricultural production and improved living conditions.

2.2 技术的详细说明

说明:

Village irrigation schemes provide irrigation for areas of between 20 and 40 hectares, surrounded by low earthen dikes. The system includes a stilling basin, which receives water from a mobile motor pump, a main channel, secondary channels and irrigation ditches. The scheme gives total control over the water available in the area, using a motor pump to move it around the system. The channels are open earth, and stretches where infiltration is high are lined with riprap. The structures are made of concrete. Village irrigation schemes require a source of water, and are therefore generally located along rivers or near permanent bodies of water.
Irrigation systems of this kind were constructed in Mali after the droughts in the 1970s under numerous development projects implemented to increase rice and wheat production. Between 1996 and 2010, for example, the IPRODI project established 450 irrigation schemes in northern Mali, creating an irrigated area of over 13,000 ha farmed by 55,000 farmers.

The water is pumped into the stilling basin and driven by the force of gravity into the main channel and the secondary and tertiary channels to the plots of individual users. Village irrigation schemes are an effective means of expanding the area of irrigated farmland and increasing production. As they permit the total control of the water available, farmers are practically unaffected by variations in rainfall, as long as the water source remains available. They therefore guarantee the production of food crops and straw for livestock. Village irrigation schemes create new irrigated farmland, which enable farmers to achieve high rice yields: around 6 tonnes per hectare. With an average price of 125 CFA francs a kilo for paddy rice, the value of output per hectare is around 750,000 CFA francs. Profit is estimated at around 300,000 CFA francs per hectare. At some sites, a second harvest is possible. Other plots are used for market gardening, with the production of onions, tomatoes, herbs, spices, etc. After the crops have been harvested, animals are allowed to graze on the plots.

The process to select an area to be developed begins with a request submitted by the community through the commune authorities. A feasibility study is conducted to determine potentially viable sites. The final choice is made in consultation with the regional and commune authorities and the villages concerned and in accordance with the financial resources available. The highly labour intensive approach is used, with beneficiaries participating in the construction work. The beneficiaries receive support from a project to plan and construct the irrigation system, purchase and install the pumping units (with financial contribution), purchase the tools and establish a start-up fund for the first season. Two technicians are trained per scheme. The village irrigation systems are operated and maintained by the beneficiaries and their management committee. The management committee must set up an operating and maintenance fund to purchase fuel and carry out any repairs. Farmers are required to pay a charge of seven sacks of paddy rice (around a third of their harvest) into the fund. In this way, the pumping units can be replaced after a number of years.
Those who participated in the construction work are given preference when the plots are distributed among the village’s families. A quarter-of-a-hectare plot is assigned to each ‘able-bodied person’ who participated in the work to construct the system. The total area assigned to each family therefore depends on the number of able-bodied people in the household. Once the system is in operation, technical services provide support to farmers for a time to teach them adapted farming practices.

2.3 技术照片

2.5 已应用该技术的、本评估所涵盖的国家/地区/地点

国家:

马里

区域/州/省:

Mali, Burkina Faso

具体说明该技术的分布:
  • 均匀地分布在一个区域
如果不知道精确的区域,请注明大致覆盖的区域:
  • 100-1,000 平方千米
注释:

Between 1996 and 2010, for example, the IPRODI project established 450 irrigation schemes in northern Mali, creating an irrigated area of over 13,000 ha farmed by 55,000 farmers. In Mali, there are numerous village irrigation schemes in the Inner Niger Delta and along the banks of the river Niger.

2.6 实施日期

如果不知道确切的年份,请说明大概的日期:
  • 10-50年前

2.7 技术介绍

详细说明该技术是如何引入的:
  • 通过项目/外部干预
注释(项目类型等):

Developed, implemented and disseminated as part of projects and programmes undertaken from the 1980s onwards to combat desertification and improve natural resource management. Implemented by GIZ (German Federal Enterprise for International Cooperation), and the project to rehabilitate dams and tracks (PRBP) and the Mali north programme (PMN).
Irrigation systems of this kind were constructed in Mali after the droughts in the 1970s under numerous development projects implemented to increase rice and wheat production. Between 1996 and 2010, for example, the IPRODI project established 450 irrigation schemes in northern Mali, creating an irrigated area of over 13,000 ha farmed by 55,000 farmers.

3. SLM技术的分类

3.1 该技术的主要目的

  • 改良生产
  • 创造有益的经济影响

3.2 应用该技术的当前土地利用类型

农田

农田

  • 一年一作
每年的生长季节数:
  • 1
具体说明:

Longest growing period in days: 120, Longest growing period from month to month: August to October

注释:

Major land use problems (compiler’s opinion): unequal distribution of irrigation water, fertility decline, Constraints of common grazing land, Constraints of forested government-owned land or commons

3.4 供水

该技术所应用土地的供水:
  • 混合雨水灌溉

3.5 该技术所属的SLM组

  • 灌溉管理(包括供水、排水)
  • 地表水管理(泉、河、湖、海)

3.6 包含该技术的可持续土地管理措施

结构措施

结构措施

  • S3:分级沟渠、渠道、水道
  • S11:其它
注释:

Specification of other structural measures: irrigation scheme

3.7 该技术强调的主要土地退化类型

化学性土壤退化

化学性土壤退化

  • Cn:肥力下降和有机质含量下降(非侵蚀所致)
生物性退化

生物性退化

  • Bc:植被覆盖的减少
水质恶化

水质恶化

  • Ha:干旱化
  • Hg:地下水/含水层水位的变化
注释:

Main causes of degradation: crop management (annual, perennial, tree/shrub), floods, droughts, population pressure, land tenure

3.8 防止、减少或恢复土地退化

具体数量名该技术与土地退化有关的目标:
  • 修复/恢复严重退化的土地

4. 技术规范、实施活动、投入和成本

4.1 该技术的技术图纸

技术规范(与技术图纸相关):

Technical knowledge required for field staff / advisors: high
Technical knowledge required for land users: low

Main technical functions: control of dispersed runoff: retain / trap, control of concentrated runoff: retain / trap, control of concentrated runoff: drain / divert, increase of infiltration, increase / maintain water stored in soil, increase of groundwater level / recharge of groundwater, water harvesting / increase water supply, water spreading
Secondary technical functions: control of dispersed runoff: impede / retard, control of concentrated runoff: impede / retard, improvement of ground cover, increase in organic matter, increase of biomass (quantity)

4.3 技术建立活动

活动 时间(季度)
1. request submitted by the community through the commune authorities
2. A feasibility study is conducted to determine potentially viable sites
3. final choice is made in consultation with the regional and commune authorities and the villages concerned and in accordance with the financial resources available
4. beneficiaries participate in the construction work: construct the irrigation system, purchase and install the pumping units, purchase the tools and establish a start-up fund for the first season.

4.4 技术建立所需要的费用和投入

对投入进行具体说明 单位 数量 单位成本 每项投入的总成本 土地使用者承担的成本%
其它 total construction 1.0 2893.14 2893.14 100.0
技术建立所需总成本 2893.14
技术建立总成本,美元 2893.14

4.5 维护/经常性活动

活动 时间/频率
1. pumping units can be replaced after a number of years

4.7 影响成本的最重要因素

描述影响成本的最决定性因素:

The cost of implementing a village irrigation scheme is around 1.5 million CFA francs per hectare.

5. 自然和人文环境

5.1 气候

年降雨量
  • < 250毫米
  • 251-500毫米
  • 501-750毫米
  • 751-1,000毫米
  • 1,001-1,500毫米
  • 1,501-2,000毫米
  • 2,001-3,000毫米
  • 3,001-4,000毫米
  • > 4,000毫米
农业气候带
  • 半干旱

Thermal climate class: subtropics

5.2 地形

平均坡度:
  • 水平(0-2%)
  • 缓降(3-5%)
  • 平缓(6-10%)
  • 滚坡(11-15%)
  • 崎岖(16-30%)
  • 陡峭(31-60%)
  • 非常陡峭(>60%)
地形:
  • 高原/平原
  • 山脊
  • 山坡
  • 山地斜坡
  • 麓坡
  • 谷底
垂直分布带:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.

5.3 土壤

平均土层深度:
  • 非常浅(0-20厘米)
  • 浅(21-50厘米)
  • 中等深度(51-80厘米)
  • 深(81-120厘米)
  • 非常深(> 120厘米)
土壤质地(表土):
  • 中粒(壤土、粉土)
  • 细粒/重质(粘土)

5.4 水资源可用性和质量

地下水位表:

5-50米

地表水的可用性:

中等

关于水质和水量的注释和进一步规范:

Groundwater table: > 10 m
Availability of surface water: surface runoff generated by limited but intense rainfalls

5.5 生物多样性

物种多样性:

5.6 应用该技术的土地使用者的特征

相对财富水平:
  • 非常贫瘠
  • 贫瘠
机械化水平:
  • 手工作业
  • 畜力牵引
性别:
  • 男人
说明土地使用者的其他有关特征:

Population density: 10-50 persons/km2
Annual population growth: 3% - 4% (mostly poor households below poverty line).
Off-farm income specification: men migrate temporarily or permanently to cities for off-farm income

5.7 应用该技术的土地使用者使用的平均土地面积

  • < 0.5 公顷
  • 0.5-1 公顷
  • 1-2 公顷
  • 2-5公顷
  • 5-15公顷
  • 15-50公顷
  • 50-100公顷
  • 100-500公顷
  • 500-1,000公顷
  • 1,000-10,000公顷
  • > 10,000公顷
这被认为是小规模、中规模还是大规模的(参照当地实际情况)?:
  • 小规模的

5.8 土地所有权、土地使用权和水使用权

土地所有权:
土地使用权:
  • 社区(有组织)
用水权:
  • 社区(有组织)
注释:

traditional land use rights on fields, communal land on pasture and forest land

5.9 进入服务和基础设施的通道

健康:
  • 贫瘠
  • 适度的
教育:
  • 贫瘠
  • 适度的
技术援助:
  • 贫瘠
  • 适度的
就业(例如非农):
  • 贫瘠
  • 适度的
市场:
  • 贫瘠
  • 适度的
能源:
  • 贫瘠
  • 适度的
道路和交通:
  • 贫瘠
  • 适度的
饮用水和卫生设施:
  • 贫瘠
  • 适度的
金融服务:
  • 贫瘠
  • 适度的

6. 影响和结论性说明

6.1 该技术的现场影响

社会经济效应

生产

作物生产

降低
增加

饲料生产

降低
增加

畜牧生产

降低
增加

生产故障风险

增加
降低

生产区域

降低
增加
收入和成本

农业收入

降低
增加

社会文化影响

食品安全/自给自足

减少
改良

contribution to human well-being

decreased
increased
注释/具体说明:

Village irrigation schemes are an effective means of expanding the area of irrigated farmland and increasing production. Farmers are practically unaffected by variations in rainfall, as long as the water source remains available. They therefore guarantee the production of food crops and straw for livestock.

生态影响

水循环/径流

水的回收/收集

减少
改良

地下水位/含水层

下降
补水
土壤

土壤水分

降低
增加

土壤覆盖层

减少
改良

6.3 技术对渐变气候以及与气候相关的极端情况/灾害的暴露和敏感性(土地使用者认为的极端情况/灾害)

渐变气候

渐变气候
季节 增加或减少 该技术是如何应对的?
年温度 增加

气候有关的极端情况(灾害)

气象灾害
该技术是如何应对的?
局地暴雨
局地风暴
气候灾害
该技术是如何应对的?
干旱
水文灾害
该技术是如何应对的?
比较和缓的(河道)洪水

其他气候相关的后果

其他气候相关的后果
该技术是如何应对的?
缩短生长期

6.4 成本效益分析

技术收益与技术建立成本相比如何(从土地使用者的角度看)?
短期回报:

积极

长期回报:

积极

技术收益与技术维护成本/经常性成本相比如何(从土地使用者的角度看)?
短期回报:

积极

长期回报:

积极

6.5 技术采用

注释:

There is a little trend towards spontaneous adoption of the Technology
Between 1996 and 2010, the IPRODI project established 450 irrigation schemes in northern Mali, creating an irrigated area of over 13,000 ha farmed by 55,000 farmers.
The earliest village irrigation schemes implemented under the IPRODI project in Mali are now 15 years old. They are still operating and in good condition. The low investment and maintenance costs and the assimilation of the operating techniques by the farmers ensure high sustainability.

6.7 该技术的优点/长处/机会

土地使用者眼中的长处/优势/机会
Those who participated in the construction work are given preference when the plots are distributed among the village’s families.
编制者或其他关键资源人员认为的长处/优势/机会
Village irrigation schemes are an effective means of expanding the area of irrigated farmland and increasing production.
Farmers are practically unaffected by variations in rainfall, as long as the water source remains available. They therefore guarantee the production of food crops and straw for livestock.
The earliest village irrigation schemes implemented under the IPRODI project in Mali are now 15 years old. They are still operating and in good condition. The low investment and maintenance costs and the assimilation of the operating techniques by the farmers ensure high sustainability.
The beneficiaries use their own funds to replace the pumping units when necessary and to extend the schemes.

6.8 技术的弱点/缺点/风险及其克服方法

编制者或其他关键资源人员认为的弱点/缺点/风险 如何克服它们?
A high standard of technical planning (topographical surveying and soil studies) and construction is required to prevent cracks from appearing in the stilling basin or the main channel and avoid the problem of uneven water distribution within the irrigation area. The most serious risk for such schemes is failure of the pumping unit. A local repair and maintenance service stocking a supply of spare parts must be available to provide assistance when the problem is beyond the abilities of the technicians trained for the scheme by the project.
The improved areas sometimes become a source of conflict after the irrigation system has been put in place. The assessment carried out during the identification and planning stage must take into account any existing and potential conflicts.

7. 参考和链接

7.1 信息的方法/来源

  • 实地考察、实地调查
  • 与土地使用者的访谈
(现场)数据是什么时候汇编的?:

01/07/2012

7.2 参考可用出版物

标题、作者、年份、ISBN:

Good Practices in Soil and Water Conservation. A contribution to adaptation and farmers´ resilience towards climate change in the Sahel. Published by GIZ in 2012.

可以从哪里获得?成本如何?

http://agriwaterpedia.info/wiki/Main_Page

模块