This is an outdated, inactive version of this case. Go to the current version.
Technologies
Inactive

Compostage des déchets organiques en Agriculture Biologique. [Tunisia]

Compostage

technologies_3726 - Tunisia

Completeness: 94%

1. General information

1.2 Contact details of resource persons and institutions involved in the assessment and documentation of the Technology

Key resource person(s)

SLM specialist:

Grissa Hanem

Centre Technique d'Agriculture Biologique

Chott Meriem Sousse

Tunisia

{'additional_translations': {}, 'value': 1, 'label': 'Name of project which facilitated the documentation/ evaluation of the Technology (if relevant)', 'text': 'Decision Support for Mainstreaming and Scaling out Sustainable Land Management (GEF-FAO / DS-SLM)', 'template': 'raw'} {'additional_translations': {}, 'value': 6148, 'label': 'Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)', 'text': "Centre Technique de l'Agriculture Biologique (CTAB) - Tunisia", 'template': 'raw'}

1.3 Conditions regarding the use of data documented through WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Yes

1.4 Declaration on sustainability of the described Technology

Is the Technology described here problematic with regard to land degradation, so that it cannot be declared a sustainable land management technology?

No

1.5 Reference to Questionnaire(s) on SLM Approaches

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

Le compostage est un procédé de décomposition des déchets organiques fermentescibles par des micro-organismes dans des conditions controlées.

2.2 Detailed description of the Technology

Description:

* Environnement naturel et humain terrain agricole, stationné plates formes du compostage.
* Principales caractéristiques :
- La technique permet l’obtention d’une matière fertilisante stabilisée riche en composés humiques, le compost, susceptible d’être utilisé au tant qu’amendement organique améliorant aussi bien la structure que la fertilité des sols.
- Le compostage est essentiellement basé sur l’action des micro-organismes qui transforment les matériaux à composter. Les procédés de contrôle de la production portent principalement sur les principaux paramètres (la température, l’humidité, le rapport C/N …).
*Objectifs :
+ Valorisation des déchets organiques en amendement organique et préserver l’environnement.
+ Recyclage des matières organiques et boucler les cycles naturels.
+ Retour de la matière organique dans le sol.
+ Diminuer le recours aussi bien aux fertilisants qu’aux pesticides en plus de favoriser la conservation de l’eau.
+ Améliorer les caractéristiques physico-chimiques et biologiques des sols.
+ Assainissement vis-à-vis des adventices et des pathogènes et aussi des agents pathogènes et parasites des animaux.
+ L’efficacité des composts dans la protection des plantes contre les maladies.
* Activités : Collecte des déchets, broyage des déchets, mise en place du tas, retournement, irrigation, évaluation de la maturité, tamisage et conditionnement.
* Intrants majeurs : les déchets organiques disponibles localement chez les agriculteurs d'origine agricole (végétale, animale), municipale, forestier, agroalimentaire, marine, ...

La technologie du compostage est appréciée par les exploitants des terres car le compost contribue à l'entretien des stocks de matière organique et améliore la fertilité des sols : stabilisation de la structure, libération d'éléments nutritifs pour les végétaux, lutte contre l'érosion, ... Ainsi que la protection des plantes contre les maladies et l'amélioration de la production.

2.3 Photos of the Technology

2.4 Videos of the Technology

Location:

Chott Meriem, Sousse

Name of videographer:

Hanem Grissa (TV Wataniya 1)

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

Tunisia

Region/ State/ Province:

Chott Meriem, Sousse

2.6 Date of implementation

Indicate year of implementation:

2000

If precise year is not known, indicate approximate date:
  • 10-50 years ago

2.7 Introduction of the Technology

  • Dans le cadre de programme de l'Agriculture Biologique en Tunisie.

3. Classification of the SLM Technology

3.1 Main purpose(s) of the Technology

  • improve production
  • reduce, prevent, restore land degradation
  • conserve ecosystem
  • preserve/ improve biodiversity
  • reduce risk of disasters
  • create beneficial economic impact

3.2 Current land use type(s) where the Technology is applied

Cropland

Cropland

  • Annual cropping
  • Perennial (non-woody) cropping
  • Tree and shrub cropping
Main crops (cash and food crops):

La plupart des cultures maraîchères, plantes aromatiques et médicinales, agrumes, oliviers et vigne.

Settlements, infrastructure

Settlements, infrastructure

  • Settlements, buildings
Remarks:

Magazin de stockage des intrants et des outils.

If land use has changed due to the implementation of the Technology, indicate land use before implementation of the Technology:

Plantation de l'olive de table et de la vigne.

3.3 Further information about land use

Water supply for the land on which the Technology is applied:
  • mixed rainfed-irrigated
Comments:

Irrigation de pointe complémentaire.

Number of growing seasons per year:
  • 1

3.4 SLM group to which the Technology belongs

  • integrated soil fertility management
  • integrated pest and disease management (incl. organic agriculture)
  • waste management/ waste water management

3.5 Spread of the Technology

Specify the spread of the Technology:
  • evenly spread over an area
If the Technology is evenly spread over an area, indicate approximate area covered:
  • < 0.1 km2 (10 ha)

3.6 SLM measures comprising the Technology

agronomic measures

agronomic measures

  • A1: Vegetation/ soil cover
  • A2: Organic matter/ soil fertility
  • A3: Soil surface treatment
  • A5: Seed management, improved varieties
vegetative measures

vegetative measures

  • V1: Tree and shrub cover
  • V2: Grasses and perennial herbaceous plants
  • V4: Replacement or removal of alien/ invasive species
  • V5: Others
structural measures

structural measures

  • S5: Dams, pans, ponds
  • S6: Walls, barriers, palisades, fences
  • S7: Water harvesting/ supply/ irrigation equipment
  • S9: Shelters for plants and animals
management measures

management measures

  • M1: Change of land use type
  • M2: Change of management/ intensity level
  • M3: Layout according to natural and human environment
  • M4: Major change in timing of activities
  • M5: Control/ change of species composition
  • M6: Waste management (recycling, re-use or reduce)

3.7 Main types of land degradation addressed by the Technology

soil erosion by water

soil erosion by water

  • Wt: loss of topsoil/ surface erosion
soil erosion by wind

soil erosion by wind

  • Et: loss of topsoil
chemical soil deterioration

chemical soil deterioration

  • Cn: fertility decline and reduced organic matter content (not caused by erosion)
  • Cp: soil pollution
  • Cs: salinization/ alkalinization
physical soil deterioration

physical soil deterioration

  • Pc: compaction
  • Pk: slaking and crusting
  • Pi: soil sealing
  • Pw: waterlogging
  • Ps: subsidence of organic soils, settling of soil
  • Pu: loss of bio-productive function due to other activities
biological degradation

biological degradation

  • Bc: reduction of vegetation cover
  • Bh: loss of habitats
  • Bq: quantity/ biomass decline
  • Bs: quality and species composition/ diversity decline
  • Bl: loss of soil life
  • Bp: increase of pests/ diseases, loss of predators
water degradation

water degradation

  • Hp: decline of surface water quality
  • Hq: decline of groundwater quality

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • prevent land degradation
  • reduce land degradation

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

Author:

Hanem Grissa

Date:

14/05/2018

4.2 Technical specifications/ explanations of technical drawing

Dimensions :
- Hauteur et largeur : selon l’équipement ou les outils de retournement du tas du compost
- Longueur : selon la quantité des déchets organique disponible sur terrain
Tas du compost à la station du compostage du CTAB à Chott Marien :
Hauteur : 1 m
Largeur : 2 m
Longueur : entre 5 et 15 m : selon la quantité disponible et/ou la quantité à produire
Retournement : - par un retourneur d’andain dont les dimensions : largeur : 2 m et hauteur : 1 m
- retournement manuel : Main d’œuvre si nécessaire

4.3 General information regarding the calculation of inputs and costs

Specify how costs and inputs were calculated:
  • per Technology unit
Specify unit:

10 tonnes

other/ national currency (specify):

Dinar Tunisien

Indicate exchange rate from USD to local currency (if relevant): 1 USD =:

2.45

Indicate average wage cost of hired labour per day:

20 Dinar Tunisien.

4.4 Establishment activities

Activity Type of measure Timing
1. Collecte des déchets verts (approvisionnement sur site ou achat) Management Décembre - Janvier
2. Broyage des déchets Agronomic Janvier - Février
3. Mise en tas des déchets Agronomic Février
4. Retournement : 1er jour de compostage afin d'assurer l'homogénéité du compostet contrôle de l'humidité Agronomic Février

4.5 Costs and inputs needed for establishment

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Labour Ouvriers heure/jour 0.5 20.0 10.0 100.0
Equipment Broyeur
Equipment Retournement d'andain. minute 8.0 0.4 3.2 100.0
Equipment Mise en place heure 1.5 2.0 3.0 100.0
Plant material Fumier bovin tonne 7.0 37.0 259.0 100.0
Plant material Déchets verts tonne 0.5 5.6 2.8 100.0
Plant material Fumier ovin tonne 2.5 37.0 92.5 100.0
Total costs for establishment of the Technology 370.5
If land user bore less than 100% of costs, indicate who covered the remaining costs:

L'exploitant des terres dans ce cas est le CTAB qui a financé tous les intrants.

4.6 Maintenance/ recurrent activities

Activity Type of measure Timing/ frequency
1. Retournement du tas afin d'assurer l'aération du compost et ajuster la température et l'humidité Agronomic En fonction de la température et de l'humidité.
2. Irrigation du compost. Agronomic Selon le taux d'humidité.
3. Évalution de la maturité du compost (test de phyto-toxicité) Agronomic Aprés 3 mois jusqu'à la maturité finale.
4. Tamisage selon la qualité et la texture du compost afin de récupérer une partie des matières organiques non compostés. Agronomic avant utilisation.
5. Conditionnement: conserver le compost dans l'abri. Management Jusqu'à utilisation.

4.7 Costs and inputs needed for maintenance/ recurrent activities (per year)

Specify input Unit Quantity Costs per Unit Total costs per input % of costs borne by land users
Equipment Retournement d'andain. minute 30.0 0.4 12.0 100.0
Equipment Irrigation m3 6.5 0.15 0.97 100.0
Total costs for maintenance of the Technology 12.97

4.8 Most important factors affecting the costs

Describe the most determinate factors affecting the costs:

- Diminution de la quantité des déchets organiques de 50% par rapport à la quantité initiale, la composition initiale du compost permet d'obtenir environ 5 tonnes du compost.
- Le montant alloué à l'achat de matière première est le plus important.

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Specify average annual rainfall (if known), in mm:

200.00

Specifications/ comments on rainfall:

Pluviométrie irrigulière.

Indicate the name of the reference meteorological station considered:

Centre Régional de Recherche en Horticulture et Agriculture Biologique à Chott Meriem.

Agro-climatic zone
  • semi-arid

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.
Indicate if the Technology is specifically applied in:
  • not relevant

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • medium (loamy, silty)
Soil texture (> 20 cm below surface):
  • medium (loamy, silty)
Topsoil organic matter:
  • high (>3%)
If available, attach full soil description or specify the available information, e.g. soil type, soil PH/ acidity, Cation Exchange Capacity, nitrogen, salinity etc.

Le taux de la matière organique est de 0.5 % avant l'utilisation du compost et de 3.5 % aprés 15 d'épandage du compost.
Salinité faible, pH: 7 - 8

5.4 Water availability and quality

Ground water table:

5-50 m

Availability of surface water:

good

Water quality (untreated):

good drinking water

Is water salinity a problem?

Yes

Specify:

La salinité dépend de la zone.

Is flooding of the area occurring?

No

Comments and further specifications on water quality and quantity:

L'eau d'irrigation est disponible à partir de barrage de Nebhana.
C'est une zone trés proche de la mer.

5.5 Biodiversity

Species diversity:
  • high
Habitat diversity:
  • high

5.6 Characteristics of land users applying the Technology

Sedentary or nomadic:
  • Sedentary
Market orientation of production system:
  • mixed (subsistence/ commercial
Off-farm income:
  • 10-50% of all income
Relative level of wealth:
  • average
Individuals or groups:
  • employee (company, government)
Level of mechanization:
  • manual work
  • mechanized/ motorized
Gender:
  • women
Age of land users:
  • youth

5.7 Average area of land owned or leased by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha
Is this considered small-, medium- or large-scale (referring to local context)?
  • medium-scale

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • state
Land use rights:
  • communal (organized)
  • CTAB
Water use rights:
  • communal (organized)

5.9 Access to services and infrastructure

health:
  • poor
  • moderate
  • good
education:
  • poor
  • moderate
  • good
technical assistance:
  • poor
  • moderate
  • good
employment (e.g. off-farm):
  • poor
  • moderate
  • good
markets:
  • poor
  • moderate
  • good
energy:
  • poor
  • moderate
  • good
roads and transport:
  • poor
  • moderate
  • good
drinking water and sanitation:
  • poor
  • moderate
  • good
financial services:
  • poor
  • moderate
  • good
Zone touristique :
  • poor
  • moderate
  • good

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

crop quality

decreased
increased

risk of production failure

increased
decreased

product diversity

decreased
increased
Water availability and quality

irrigation water availability

decreased
increased

demand for irrigation water

increased
decreased
Income and costs

expenses on agricultural inputs

increased
decreased

farm income

decreased
increased

diversity of income sources

decreased
increased

economic disparities

increased
decreased

workload

increased
decreased
Other socio-economic impacts

valorisation des déchets de la région

en baisse
en augmentation

création d'emploi

en baisse
en augmentation

Socio-cultural impacts

food security/ self-sufficiency

reduced
improved

health situation

worsened
improved

recreational opportunities

reduced
improved

community institutions

weakened
strengthened

national institutions

weakened
strengthened

SLM/ land degradation knowledge

reduced
improved

conflict mitigation

worsened
improved

situation of socially and economically disadvantaged groups

worsened
improved

Ecological impacts

Water cycle/ runoff

water quantity

decreased
increased

surface runoff

increased
decreased

excess water drainage

reduced
improved

evaporation

increased
decreased
Soil

soil moisture

decreased
increased

soil cover

reduced
improved

soil loss

increased
decreased

soil crusting/ sealing

increased
reduced

soil compaction

increased
reduced

nutrient cycling/ recharge

decreased
increased

salinity

increased
decreased

soil organic matter/ below ground C

decreased
increased

acidity

increased
reduced
Biodiversity: vegetation, animals

Vegetation cover

decreased
increased

biomass/ above ground C

decreased
increased

plant diversity

decreased
increased

invasive alien species

increased
reduced

beneficial species

decreased
increased

habitat diversity

decreased
increased

pest/ disease control

decreased
increased
Climate and disaster risk reduction

flood impacts

increased
decreased

landslides/ debris flows

increased
decreased

drought impacts

increased
decreased

emission of carbon and greenhouse gases

increased
decreased

micro-climate

worsened
improved

6.2 Off-site impacts the Technology has shown

water availability

decreased
increased

groundwater/ river pollution

increased
reduced

buffering/ filtering capacity

reduced
improved

wind transported sediments

increased
reduced

damage on neighbours' fields

increased
reduced

impact of greenhouse gases

increased
reduced

6.3 Exposure and sensitivity of the Technology to gradual climate change and climate-related extremes/ disasters (as perceived by land users)

Gradual climate change

Gradual climate change
Season Type of climatic change/ extreme How does the Technology cope with it?
annual temperature increase well
seasonal temperature dry season increase well
annual rainfall decrease well
seasonal rainfall wet/ rainy season decrease well

Climate-related extremes (disasters)

Meteorological disasters
How does the Technology cope with it?
local rainstorm well
Biological disasters
How does the Technology cope with it?
epidemic diseases very well

Other climate-related consequences

Other climate-related consequences
How does the Technology cope with it?
reduced growing period well
Comments:

Le compost est produit selon la norme tunisienne de l'amendement organique et les réglementation de l'agriculture biologique.

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

positive

Long-term returns:

very positive

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

very positive

Long-term returns:

very positive

6.5 Adoption of the Technology

  • 1-10%
Of all those who have adopted the Technology, how many have did so spontaneously, i.e. without receiving any material incentives/ payments?
  • 90-100%
Comments:

Cette technologie (Compast à base des déchets organiques) est obligatoire dans l'agriculture biologique.

6.6 Adaptation

Has the Technology been modified recently to adapt to changing conditions?

Yes

other (specify):

Disponibilté de la matière première

6.7 Strengths/ advantages/ opportunities of the Technology

Strengths/ advantages/ opportunities in the land user’s view
Disponibilité des déchets organiques à proximité et au niveau de l'exploitation agricole.
Le compostage améliore la fertilité des sols et modifie ses propriétés physico-chimiques et biologiques et protège les plantes contre les maladies.
Le compost fournit les éléments nutritifs nécessaires au développement de la plante.
Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
Technique facile à adopter par les exploitants.
Valorisation des déchets organiques en amendement organique.
Subvention de 50 % du coût des investissements pour les équipements et instruments et moyens spécifiques à la production du compost.

6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them

Weaknesses/ disadvantages/ risks in the land user’s view How can they be overcome?
Coût d'investissement initial élévé dans l'achat de broyeur. Encouragement d'implanter les GDA et SMSA.
Processus un peu difficile pour un exploitant débutant, qui manque de technicité pour la production du compost. Accompagnement et encadrement des exploitants sur terrain.
Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view How can they be overcome?
Promotion des fournisseurs des instruments et des équipements produits localement est limitée. Encouragement des fournisseurs locaux à promouvoir leurs services.

7. References and links

7.1 Methods/ sources of information

  • field visits, field surveys

1

  • interviews with land users

1

  • interviews with SLM specialists/ experts

4 experts de CTAB.

7.3 Links to relevant information which is available online

Title/ description:

Agriculture biologique en tunisie Un créneau porteur

URL:

http://fesa.over-blog.org/article-agriculture-biologique-en-tunisie-un-creneau-porteur-2-62245035.html

Title/ description:

Compostage

URL:

http://www.apia.com.tn/medias/files/compostage.pdf

Title/ description:

Etude et évaluation du compostage de différents types de matières organiques et des effets des jus de composts biologiques sur les maladies des plantes

URL:

http://orgprints.org/3064/1/Etude.pdf

Links and modules

Expand all Collapse all

Modules