This is an outdated, inactive version of this case. Go to the current version.
Technologies
Inactive

Water run-off control plan on cultivated land [South Africa]

Watercourses and contours

technologies_956 - South Africa

Completeness: 67%

1. General information

1.3 Conditions regarding the use of data documented through WOCAT

When were the data compiled (in the field)?

01/06/1999

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Yes

2. Description of the SLM Technology

2.1 Short description of the Technology

Definition of the Technology:

Artificially built watercourses with contour banks with a specific gradient

2.2 Detailed description of the Technology

Description:

Watercourse: According to the topography, one or two watercourses are needed to drain any excess run-off water during high rainfall intensities. A watercourse is built directly downhill. A perennial grass adapted to the specific environment is established in the watercourses. Maintenance requires that the grass must be fertilised according to the climate of the area. Regular (once or twice a year) cutting of the grass is very important to maintain a good grass cover, through which soil erosion in the watercourse can be prevented.

Contour banks: These are built with a gradient to spill the excess water into the watercourse. The purpose of contour banks is to shorten the slope so as to reduce the speed of the water and prevent soil erosion. The maintenance requires keeping the canal in good shape and maintaining the height of the banks.

2.3 Photos of the Technology

2.5 Country/ region/ locations where the Technology has been applied and which are covered by this assessment

Country:

South Africa

Region/ State/ Province:

North West Province

Further specification of location:

Lichtenburg

2.6 Date of implementation

If precise year is not known, indicate approximate date:
  • 10-50 years ago

2.7 Introduction of the Technology

Specify how the Technology was introduced:
  • through projects/ external interventions
Comments (type of project, etc.):

The contour part came mainly form the USA.
The watercourse part was developed in South Africa.

3. Classification of the SLM Technology

3.2 Current land use type(s) where the Technology is applied

Cropland

Cropland

  • Annual cropping
Comments:

Major land use problems (compiler’s opinion): Cultivating lands without the necessary soil conservation works to prevent soil erosion.

Major land use problems (land users’ perception): Cultivating the lands preventing soil erosion through plant directions

3.3 Further information about land use

Water supply for the land on which the Technology is applied:
  • rainfed
Number of growing seasons per year:
  • 1
Specify:

Longest growing period in days: 180

Longest growing period from month to month: Oct - Mar

3.5 Spread of the Technology

Specify the spread of the Technology:
  • evenly spread over an area
If the Technology is evenly spread over an area, indicate approximate area covered:
  • 1-10 km2
Comments:

Total area covered by the SLM Technology is 3 m2.

Although the total extent of the farm is 584 ha, only 250 ha plus 50 ha adjacent land was addressed through this technology.

3.6 SLM measures comprising the Technology

3.7 Main types of land degradation addressed by the Technology

soil erosion by water

soil erosion by water

  • Wg: gully erosion/ gullying
  • Wt: loss of topsoil/ surface erosion
water degradation

water degradation

  • Ha: aridification
chemical soil deterioration

chemical soil deterioration

  • Cn: fertility decline and reduced organic matter content (not caused by erosion)
Comments:

Main type of degradation addressed: Wt: loss of topsoil / surface erosion, Wg: gully erosion / gullying, Ha: aridification

Secondary types of degradation addressed: Cn: fertility decline and reduced organic matter content

Main causes of degradation: other human induced causes (specify) (Agricultural causes - Cultivating land on a step slope without proper conservation practices.), education, access to knowledge and support services (Lack of knowledge - How to solve the problem)

Secondary causes of degradation: other natural causes (avalanches, volcanic eruptions, mud flows, highly susceptible natural resources, extreme topography, etc.) specify (Topography; concentrating water in valleys causing soil erosion (steep slopes).), Poor conservation ethic

3.8 Prevention, reduction, or restoration of land degradation

Specify the goal of the Technology with regard to land degradation:
  • reduce land degradation
  • prevent land degradation
Comments:

Main goals: prevention of land degradation, mitigation / reduction of land degradation

4. Technical specifications, implementation activities, inputs, and costs

4.1 Technical drawing of the Technology

Author:

Pieter J. Theron

4.2 Technical specifications/ explanations of technical drawing

Water run-off control plan

Location: Lichtenburg. North West

Technical knowledge required for field staff / advisors: high

Technical knowledge required for land users: low

Main technical functions: control of dispersed runoff: impede / retard, control of concentrated runoff: drain / divert, reduction of slope length

Secondary technical functions: control of dispersed runoff: retain / trap, increase of infiltration, increase / maintain water stored in soil, Maintain soil fertility as less fertilizer are lost by water run-off

Vegetative measure: watercourses
Vegetative material: C : perennial crops, G : grass
Number of plants per (ha): seeds 6-8kg/ha

Vegetative measure: Vegetative material: C : perennial crops, G : grass

Vegetative measure: Vegetative material: C : perennial crops, G : grass

Vegetative measure: Vegetative material: C : perennial crops, G : grass

Grass species: Digitaria Smuts, Eragrostis curvula, Cynodom dactylon

Structural measure: bunds/banks: contour
Vertical interval between structures (m): 1.3-1.75
Spacing between structures (m): 72-33
Depth of ditches/pits/dams (m): 0.4
Width of ditches/pits/dams (m): 2
Height of bunds/banks/others (m): 0.3
Width of bunds/banks/others (m): 4

Construction material (earth): Construction contour banks with soil form the ditches

Lateral gradient along the structure: 0.3%

Vegetation is used for stabilisation of structures.

4.3 General information regarding the calculation of inputs and costs

other/ national currency (specify):

rand

Indicate exchange rate from USD to local currency (if relevant): 1 USD =:

6.00

4.4 Establishment activities

Activity Type of measure Timing
1. Established grass in the watercourses Vegetative After construction according to design specifications
2. Surveying Structural Dry season
3. Construction of contours Structural Any time depending on soil moisture
4. Construction of watercourse Structural Before growing season

4.5 Costs and inputs needed for establishment

Comments:

Duration of establishment phase: 24 month(s)

4.6 Maintenance/ recurrent activities

Activity Type of measure Timing/ frequency
1. Building contours and watercourses Agronomic Any time / Before planting of crops
2. Building contours and watercourses Agronomic Depending on soil moisture /
3. Maintenance Agronomic Before planting of crops / Annually
4. Cultivation between contours Agronomic Depending on the crop / Annually
5. Maintaining a good grass cover Vegetative Rainy season /Once or more times a year depending on the grass
6. Fertilisation of the grass in the watercourse Vegetative Rainy season /Once or twice in the rainy season
7. Watercourse, cutting the grass Structural Beginning of rainy season/Annual
8. Contours repairing flood damage Structural Dry season/After heavy rains
9. Contour opening ditches Structural Before planting of cops/Annual

4.7 Costs and inputs needed for maintenance/ recurrent activities (per year)

Comments:

Machinery/ tools: Tractor & plough or a grader

Contours per kilometre. NB currant tariff for subsidy. Watercourse construction per volume soil moved and grass establishing per ha above the current tariff for subsidy from April 1998

4.8 Most important factors affecting the costs

Describe the most determinate factors affecting the costs:

Soil moisture and clay contents

5. Natural and human environment

5.1 Climate

Annual rainfall
  • < 250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1,000 mm
  • 1,001-1,500 mm
  • 1,501-2,000 mm
  • 2,001-3,000 mm
  • 3,001-4,000 mm
  • > 4,000 mm
Agro-climatic zone
  • semi-arid

5.2 Topography

Slopes on average:
  • flat (0-2%)
  • gentle (3-5%)
  • moderate (6-10%)
  • rolling (11-15%)
  • hilly (16-30%)
  • steep (31-60%)
  • very steep (>60%)
Landforms:
  • plateau/plains
  • ridges
  • mountain slopes
  • hill slopes
  • footslopes
  • valley floors
Altitudinal zone:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.

5.3 Soils

Soil depth on average:
  • very shallow (0-20 cm)
  • shallow (21-50 cm)
  • moderately deep (51-80 cm)
  • deep (81-120 cm)
  • very deep (> 120 cm)
Soil texture (topsoil):
  • medium (loamy, silty)
Topsoil organic matter:
  • low (<1%)

5.6 Characteristics of land users applying the Technology

Market orientation of production system:
  • commercial/ market
Off-farm income:
  • less than 10% of all income
Relative level of wealth:
  • average
Level of mechanization:
  • mechanized/ motorized
Indicate other relevant characteristics of the land users:

Population density: 10-50 persons/km2

Annual population growth: 1% - 2%

10% of the land users are very rich and own 100% of the land.
90% of the land users are average wealthy and own 100% of the land (If management is good).

Off-farm income specification: Farmers are dedicated to make a living out of farming, although there are some farmers with an off-farm income such as transport.

5.7 Average area of land owned or leased by land users applying the Technology

  • < 0.5 ha
  • 0.5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1,000 ha
  • 1,000-10,000 ha
  • > 10,000 ha

5.8 Land ownership, land use rights, and water use rights

Land ownership:
  • individual, titled
Land use rights:
  • individual

6. Impacts and concluding statements

6.1 On-site impacts the Technology has shown

Socio-economic impacts

Production

crop production

decreased
increased

production area

decreased
increased

land management

hindered
simplified

Socio-cultural impacts

conflict mitigation

worsened
improved

Ecological impacts

Water cycle/ runoff

surface runoff

increased
decreased
Quantity before SLM:

60

Quantity after SLM:

20

excess water drainage

reduced
improved
Soil

soil moisture

decreased
increased

soil loss

increased
decreased
Quantity before SLM:

25

Quantity after SLM:

4

6.2 Off-site impacts the Technology has shown

downstream siltation

increased
decreased

groundwater/ river pollution

increased
reduced

6.4 Cost-benefit analysis

How do the benefits compare with the establishment costs (from land users’ perspective)?
Short-term returns:

neutral/ balanced

Long-term returns:

neutral/ balanced

How do the benefits compare with the maintenance/ recurrent costs (from land users' perspective)?
Short-term returns:

neutral/ balanced

Long-term returns:

neutral/ balanced

6.5 Adoption of the Technology

Comments:

15% of land user families have adopted the Technology with external material support

Comments on acceptance with external material support: estimates

1% of land user families have adopted the Technology without any external material support

Comments on spontaneous adoption: estimates

There is a little trend towards spontaneous adoption of the Technology

Comments on adoption trend: So little, almost none. The lack in technicians from government promoting this technology and to deliver technical services are the main reasons expect for the poor conservation ethic of the farmers.

6.7 Strengths/ advantages/ opportunities of the Technology

Strengths/ advantages/ opportunities in the land user’s view
Prevent soil erosion

How can they be sustained / enhanced? Good regular maintenance
Building up a good layer of topsoil
Effective run-off control of excess rainwater
Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
Effective erosion control

How can they be sustained / enhanced? Regular maintenance
Improve water infiltration

How can they be sustained / enhanced? Good cultivation practices and maintenance of contours
Increase crop yield

How can they be sustained / enhanced? Good cultivation practices and maintenance of contours
Prevent off-site siltation

How can they be sustained / enhanced? Good maintenance

6.8 Weaknesses/ disadvantages/ risks of the Technology and ways of overcoming them

Weaknesses/ disadvantages/ risks in the land user’s view How can they be overcome?
Hampers cultivation Adapt change in cultivation practises
Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view How can they be overcome?
Cannot think of any

Links and modules

Expand all Collapse all

Modules