Technologies

Submerged drains [Netherlands]

Onderwaterdrains (NL)

technologies_1704 - Netherlands

Completeness: 80%

1. Informação geral

1.2 Detalhes do contato das pessoas capacitadas e instituições envolvidas na avaliação e documentação da tecnologia.

Pessoa(s)-chave

SLM specialist:

Van de Akker Jan J.H.

Wageningen Environmental Research (Alterra)

Netherlands

SLM specialist:
Name of project which facilitated the documentation/ evaluation of the Technology (if relevant)
Preventing and Remediating degradation of soils in Europe through Land Care (EU-RECARE )
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Wageningen Environmental Research (Alterra) - Netherlands
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Provincie Holland Zuid - Netherlands
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Provincie Utrecht - Netherlands
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
LTO NOORD - Netherlands
Name of the institution(s) which facilitated the documentation/ evaluation of the Technology (if relevant)
Waterschap Amstel, Gooi en Vecht - Netherlands

1.3 Condições em relação ao uso da informação documentada através de WOCAT

The compiler and key resource person(s) accept the conditions regarding the use of data documented through WOCAT:

Sim

2. Descrição da tecnologia de gestão sustentável da terra

2.1 Descrição curta da tecnologia

Definição da tecnologia:

Submerged drains are drains installed in grassland on peatsoils with the aims to decrease soil subsidence and emission of CO2 and N2O due to the oxidation of peat soil, and to maintain suitable groundwater levels in fields for grassland production and grazing.

2.2 Descrição detalhada da tecnologia

Descrição:

Contrary to usual drains, submerged drains are installed below ditchwater level. Submerged drains diminish the differences between ditch level and groundwater level in the fields by enabling the infiltration from ditch to field and the drainage from field to ditch.
In summer and dry periods the infiltration from ditch to field is much lower than the evapotranspiration of the grass, resulting in a lowering of the groundwater level some decimetres below ditch water level. With submerged drains the groundwater level is lowered less drastically because infiltration from ditch to field is improved. In winter and wet periods, fields are drained more quickly compared to conventional drainage.

Purpose of the Technology: Submerged drains diminish the differences between ditch level and groundwater level in the fields by enabling the infiltration from ditch to field and the drainage from field to ditch. Under peak rainfall events groundwater levels become less high and remain at high levels for shorter times than in fields without submerged drains.
Due to the increased groundwater level in summer the decomposition of the peat soil is reduced. As a result, the rate of soil subsidence is decreased and also the emission of greenhouse gases and of N and P released to the surface water.

Establishment / maintenance activities and inputs: The installation of submerged drains is done with common drainage installation machines. Submerged drains should be installed between 15 and 25 cm below the ditch water level, and between 45 and 75 cm below the soil surface. The drain pipes should have a diameter of at least 6 cm. The distance between drains is at most 6 m. Drain length is at most 300 m. Submerged drains can be installed in the length or width direction of a field. Drains must be installed level.

Natural / human environment: Submerged drains were designed for peat soils under permanent pasture for dairy farming. More than 70 % of Dutch peat soils are under this land use. Drainage of these peat soils results in subsidence, mainly by decomposition (oxidation) of the peat (partly by shrinkage and consolidation). This is an ongoing process, because every 10 to 15 year ditchwater levels are adapted to the lowered surface in order to enable dairy farming and to prevent the conversion to wetlands. Soil subsidence causes several problems: decreased suitability for grazing and grassland farming, increased flood risk, emission of greenhouse gases, damage to infrastructure (dikes, roads, foundations, sewerage networks) and increased cost of water management.

Submerged drains were tested with a network of practitioners and 10 dairy farmers in the Dutch peat soil area between 2011 and 2013 on an area of 20 ha.

2.3 Fotos da tecnologia

2.5 País/região/locais onde a tecnologia foi aplicada e que estão cobertos nesta avaliação

Country:

Netherlands

Region/ State/ Province:

The Netherlands/Province of Zuid-Holland

Further specification of location:

Krimpenerwaard

Especifique a difusão da tecnologia :
  • Uniformemente difundida numa área
If the Technology is evenly spread over an area, specify area covered (in km2):

0,054

Comentários:

Total area covered by the SLM Technology is 0.054 m2.

The measure was tested in three pilots in the areas Krimpenerwaard, Keulevaart and Demmerkiksekade. Each pilot covered two fields: one with submerged drains and one without. The area given refers to the pilot in the Krimpenerwaard.

2.6 Data da implementação

Caso o ano exato seja desconhecido, indique a data aproximada:
  • less than 10 years ago (recently)

2.7 Introdução da tecnologia

Especifique como a tecnologia foi introduzida:
  • durante experiências/pesquisa
  • através de projetos/intervenções externas
  • stimulated by regional authorities
Comentários (tipos de projeto, etc.):

Since 2003 submerged drains have been applied on several experimental farms in The Netherlands. Implementations over larger areas (i.e. a water management unit, 'peilval' in Dutch) will be done in 2016.

2007: research on soil subsidence in the Western peat area following the large scale groundweter level lowering in the 1960s and 1970s signalled the high rate of soil subsidence (5-12 mm/y) (Van den Akker et al., 2007a)

2008: concerns about soil subsidence in the western peat area from the provincial autorities of Noord-Holland, Utrecht and Zuid-Holland in the policy document 'Voorloper Groene Hart' (2008)

2008-2012: various research projects to test the effectiveness of submerged drains to reduce soil subsidence and to improve conditions for dairy farming, and on the effects for water quality: www.waarheenmethetveen.nl, Hoving et al. (2008), Woestenburg (2009), EU project EUROPEAT, Woestenburg et al. 2009; Jansen et al., 2010; Hendriks and Van den Akker, 2012; Hoving et al. (2008, 2009, 2013)

2011-2012: research on the Peat Area Innovation Centre (VIC) to test effects of submerged drainage in combination with dynamic groundwater level management (Hoving et al., 2013)

2012- testing by research instsiutes of economic viability of submerged drains with regard to water level management and agricultural productivity, on assignment of the province Noord-Holland, waterboard Hollands Noorderkwartier.

2009-2011: various modelling studies assigned by the provinces and water boards of the western peat meadow area on the effects of submerged drains for the demand for inlet and discharge of water and effects on the decomposition of peat and the water quality.

2011: model research on effects of submerged drains on the water demand of the western peat area until 2050 under climate change (Van den Akker et al., 2011)

2010-2013 experimental research in 3 pilots initiated by the province of Utrecht and Zuid-Holland, four water boards and the farmers' organisation LTO Noord. Aim: to test if the application of submerged drains results in larger amounts of water to supply and to discharge from the peat meadow area, and to test if the submerged drains result in a larger load of nutrients to ditches,

3. Classificação da tecnologia de gestão sustentável da terra

3.2 Tipo(s) atualizado(s) de uso da terra onde a tecnologia foi aplicada

Pastagem

Pastagem

Pastagem intensiva/produção de forragem:
  • Pastos melhorados
  • cows
Comentários:

Major land use problems (compiler’s opinion): The major land use problems in the Western Dutch peat soil area is soil subsidence due to the lowering of the groundwater level in the 1960s and 1970s. The soil subsidence amounts to 0-2.5 cm per year. It is mainly caused by the oxidation of peat soil, which releases nutrients to soil and surface water, and CO2 and N2O to the atmosphere. The soil subsidence causes several problems:
- damage to buildings and infrastructure
- increasing costs of water management: high groundwater levels require pumping of water to enable agricultural use, and storage of rainfall excess water during peak rainfall events
- drainage of nature reserves to lowered agricultural land
- water pollution: the lowering of the groundwater level causes upward seepage of nutrient-rich water to polders
- greenhouse gas emissions (2-3% of total CO2 emissions in The Netherlands)
- loss of peat soils (2% per year in the NL)
- increased flood risk (due to combination with sealevel rise)

Major land use problems (land users’ perception): Grassland and arable farming are hampered by high groundwater levels due to a lowered bearing capacity and too wet conditions for crops. Maintaining the groundwater level at a level high enough to prevent the decomposition of peat soil would imply a conversion to wetlands and forest swamps. This is not acceptable to various kinds of land users (nature managers, farmers, users of built-up area). This would also mean the loss of the cultural historic open landscape and habitat for meadow birds, strongly reduced economic possibilities and an increased demand of water from the rivers (view of water managers and governments).

Future (final) land use (after implementation of SLM Technology): Grazing land: Gi: Intensive grazing/ fodder production

Longest growing period in days: 270Longest growing period from month to month: April-October
Livestock density: > 100 LU /km2

3.3 Has land use changed due to the implementation of the Technology?

Has land use changed due to the implementation of the Technology?
  • Yes (Please fill out the questions below with regard to the land use before implementation of the Technology)
Pastagem

Pastagem

  • Intensive grazing/ fodder production

3.4 Water supply

Abastecimento de água para a terra na qual a tecnologia é aplicada:
  • Precipitação natural

3.5 Grupo de gestão sustentável da terra ao qual pertence a tecnologia

  • Desvio e drenagem de água
  • Gestão do lençol freático

3.6 Medidas de gestão sustentável da terra contendo a tecnologia

Medidas estruturais

Medidas estruturais

  • S4: Valas de nível, fossos
Medidas de gestão

Medidas de gestão

  • M7: Outros
Comentários:

Main measures: management measures

Specification of other management measures: maintaining high groundwater level

3.7 Principais tipos de degradação da terra abordados pela tecnologia

Deteriorização química do solo

Deteriorização química do solo

  • Cn: declínio de fertilidade e teor reduzido de matéria orgânica (não causado pela erosão)
Deteriorização física do solo

Deteriorização física do solo

  • Pw: estagnação hídrica
  • Ps: Subsidência de solos orgânico, sedimentação do solo
Degradação da água

Degradação da água

  • Hg: mudança no lençol freático/aquífero
  • Hp: declínio da qualidade de água de superfície
Comentários:

Main type of degradation addressed: Cn: fertility decline and reduced organic matter content, Ps: subsidence of organic soils, settling of soil

Secondary types of degradation addressed: Pw: waterlogging, Hg: change in groundwater / aquifer level, Hp: decline of surface water quality

Main causes of degradation: other human induced causes (specify) (lowering of the groundwater level to enable agricultural use of the peat soils results in soil subsidence and detioration of ground- and surface water quality due to capillary rise)

Secondary causes of degradation: change in temperature (higher temperatures under climate change increase the decomposition rate of peat soil; subsidence and CO2 emissions will increase by 75%), change of seasonal rainfall (decrease in summer rainfall (23% in warm and dry CC scenario for NL)), inputs and infrastructure: (roads, markets, distribution of water points, other, …) (maintenance of high water levels in built-up and natural areas increases the difference in groundwater level with agricultural land onb peat soils)

3.8 Redução, prevenção ou recuperação da degradação do solo

Especifique o objetivo da tecnologia em relação a degradação da terra:
  • Reduzir a degradação do solo

4. Especificações técnicas, implementação de atividades, entradas e custos

4.1 Desenho técnico da tecnologia

Especificações técnicas (relacionada ao desenho técnico):

The picture shows a cross section through an agricultural field, bounded by two ditches. A submerged drain (yellow bar in the picture) is installed at 80 cm below the soil surface. It ends in the ditch on the left side at 20 cm below the water level in the ditch. The dotted line indicates the position of the groundwater table in the situation without the submerged drain; the continuous blue line indicates the position in the situation where the submerged drain is installed. The lines show that in summer the groundwater level is raised to nearly the level of the ditch water by the submerged drain, whereas the level would be approximately 30 cm lower without the drain.
In winter, in the situation with the submerged drain, the groundwater level is around 40 cm below the soil surface. This enables the farmer to use the field for grazing or to traffic the field. However, in the situation without the drain, the groundwater level nearly reaches the soil surface in the centre of the field, impeding traffic or grazing on the field.

Technical knowledge required for field staff / advisors: moderate (Estimates of economic benefits due to increased grass production and grazing periods vary between years with meteorological conditions.)

Technical knowledge required for land users: moderate (Specific conditions apply to the dimensions and positioning of submerged drains in the fields. Level position and lebgth are critical.)

Technical knowledge required for companies installing the drains: moderate (Specific conditions apply to the dimensions and positioning of submerged drains in the fields. Level position and lebgth are critical. Soil must have sufficient bearing capacity during installation.)

Technical knowledge required for water board: moderate (submerged drains increase the water supply and discharge from groundwater level management units. Additional pumping effort can be prevented by informed water level management.)

Technical knowledge required for researchers: (the implications of submerged drains on the water management in an entire management unit should be explored using coupled hydraulic and rainfall-runoff models.)

Main technical functions: improvement of topsoil structure (compaction), maintaining soil organic matter

Secondary technical functions: increase of infiltration, increase / maintain water stored in soil, drainage of excess rainfall

Other type of management: Maintaining high groundwater levels.

Autor:

Jan van den Akker, Alterra, Droevendaalsesteeeg 3, 6708 PB Wageningen, The Netherlands

4.2 Informação geral em relação ao cálculo de entradas e custos

Outro/moeda nacional (especifique):

euro

If relevant, indicate exchange rate from USD to local currency (e.g. 1 USD = 79.9 Brazilian Real): 1 USD =:

1,09

4.3 Atividades de implantação

Atividade Timing (season)
1. maintenance of drains and outlet in ditch
2. installation of submerged drains in dry periods

4.4 Custos e entradas necessárias para a implantação

Especifique a entrada Unidade Quantidade Custos por unidade Custos totais por entrada % dos custos arcados pelos usuários da terra
Mão-de-obra maintenance of drains and outlet in ditch ha 1,0 30,14 30,14 100,0
Mão-de-obra installation of submerged drains ha 1,0 1980,0 1980,0 100,0
Custos totais para a implantação da tecnologia 2010,14
Total costs for establishment of the Technology in USD 1844,17
Comentários:

Lifespan of the drains: 30 years

4.5 Atividades recorrentes/manutenção

Atividade Calendarização/frequência
1. maintenance of submerged drains several times in lifetime of drains (30 y)

4.6 Custos e entradas necessárias pata a manutenção/atividades recorrentes (por ano)

Especifique a entrada Unidade Quantidade Custos por unidade Custos totais por entrada % dos custos arcados pelos usuários da terra
Outros Annual cost incl maintenance ha 1,0 127,0 127,0 100,0
Custos totais para a manutenção da tecnologia 127,0
Total costs for maintenance of the Technology in USD 116,51
Comentários:

Machinery/ tools: establishment and installation require specific skills and machinery; hired, not done by the farmer himself

Investment costs of 1500-1800 €/ha are based on submerged drains at 6 m distance. Costs per m of drain establishment based on drains of 6 cm diameter. Costs based on practical experience from farmers. Drains may have a lifetime of 30 years and require little maintenance.

Specific skills and machinery are required for installation and maintenance, hired from a drainage company. The farmer must only ensure that the outlets of the drains in the ditches remain open and undamaged.

4.7 Fatores mais importantes que afetam os custos

Descreva os fatores mais determinantes que afetam os custos:

We do not have information on specific cost items, only on establishment costs ad between 1500 and 1800 euro/ha, and annual cost of 117 €/ha incl maintenance, assuming a 20-year life time. Establishment costs can also be expressed per m of drain, i.e. 1.10 EURO per m including materials (drain of 6 cm diameter).

Determinate factors include size and geometry of fields; installation in the length direction is cheaper, and results in fewer outlets in the receiving ditch.

5. Ambiente naturale e humano

5.1 Clima

Precipitação pluviométrica anual
  • <250 mm
  • 251-500 mm
  • 501-750 mm
  • 751-1.000 mm
  • 1.001-1.500 mm
  • 1.501-2.000 mm
  • 2.001-3.000 mm
  • 3.001-4.000 mm
  • > 4.000 mm
Especificações/comentários sobre a pluviosidade:

Distribution of rainfall over the year: 23% (winter), 19% (spring), 27% (summer) and 31% (autumn)

Zona agroclimática
  • úmido
  • Subúmido

Thermal climate class: temperate

5.2 Topografia

Encostas em média:
  • Plano (0-2%)
  • Suave ondulado (3-5%)
  • Ondulado (6-10%)
  • Moderadamente ondulado (11-15%)
  • Forte ondulado (16-30%)
  • Montanhoso (31-60%)
  • Escarpado (>60%)
Formas de relevo:
  • Planalto/planície
  • Cumes
  • Encosta de serra
  • Encosta de morro
  • Sopés
  • Fundos de vale
Zona de altitude:
  • 0-100 m acima do nível do mar
  • 101-500 m acima do nível do mar
  • 501-1.000 m acima do nível do mar
  • 1.001-1.500 m acima do nível do mar
  • 1.501-2.000 m acima do nível do mar
  • 2.001-2.500 m acima do nível do mar
  • 2.501-3.000 m acima do nível do mar
  • 3.001-4.000 m acima do nível do mar
  • > 4.000 m acima do nível do mar
Comentários e outras especificações sobre a topografia:

Altitudinal zone: 0-100 m a.s.l. (Submerged drains are designed for polders in lowland areas on peat soils)
Landforms: Plateau/plains (submerged drains are designed to drain level fields)
Slopes on average: Flat (submerged drains are designed to drain flat terrain, based on hydraulic prressure head differences between field and ditch)

5.3 Solos

Profundidade do solo em média:
  • Muito raso (0-20 cm)
  • Raso (21-50 cm)
  • Moderadamente profundo (51-80 cm)
  • Profundo (81-120 cm)
  • Muito profundo (>120 cm)
Textura do solo (solo superficial):
  • Fino/pesado (argila)
Matéria orgânica do solo superficial:
  • Alto (>3%)
Caso disponível anexe a descrição completa do solo ou especifique as informações disponíveis, p. ex. tipo de solo, PH/acidez do solo, nitrogênio, capacidade de troca catiônica, salinidade, etc:

Soil depth on average: Very deep (if the peat substrate is considered as part of the soil profile, soils are deeper than 120 cm, with peat packages up to 13 m in some parts of the western Dutch peatland area) and shallow (If the top of the C-horizon is considered as the bottom of the soil profile. C-horizons typically start at 15-30 cm below the soil surface)
Soil texture is fine/heavy (for peat soils with a clayey top layer. In peat soils without such a top layer, a soil texture indication is not applicable. Peat soils are defined as having at least 40 cm of peat in the top 80 cm)
Soil fertility is very high (peat soils are able to supply ample nutrients to plants provided that they are well drained)
Topsoil organic matter is high (Organic matter contents in the topsoil are above 20%. Peat soils are defined as having at least 40 cm of peat in the top 80 cm according to the Dutch soil classification system)
Soil drainage/infiltration is poor/none (peat soils inherently have poor drainage due to their low position with reference to the groundwater level in the regional water system. Values of Ksat reported 2.9-5.0 cm/d)
Soil water storage capacity is very high (the soil water storage capacity is very high due to the large pore space (0.70-0.90 m3/m3))

5.4 Disponibilidade e qualidade de água

Lençol freático:

< 5 m

Disponibilidade de água de superfície:

Bom

Qualidade da água (não tratada):

apenas para uso agrícola (irrigação)

Comentários e outras especificações sobre a qualidade e a quantidade da água:

Ground water table: <5m (Average lowest grondwater level in the pilot region is 5-10 cm below the soil surface; average highest level 55-65 cm)
Availability of surface water is good (surface water is amply available due to the low position of the peat soil area compared to the mean sea level, and due to the dense network of ditches and other surface water conveyors and bodies) and excess (surface water levels are under continuous control by the water boards. Therefore flood situations do not occur, but under high-intensity rainfall events fields may submerge)
Water quality (untreated) is for agriculutral use only (Irrigation, surface and groundwater can be used for agriculture without treatment. Nutrient rich water emerging by capillary rise in polders may not be suitable for nature.)
Biodiversity is medium (the grasslands in the western peatsoil area are suitable habtitats for meadow birds)

5.5 Biodiversidade

Diversidade de espécies:
  • Médio

5.6 Características dos usuários da terra que utilizam a tecnologia

Orientação de mercado do sistema de produção:
  • Comercial/mercado
Rendimento não agrícola:
  • Menos de 10% de toda renda
Nível relativo de riqueza:
  • Média
Indivíduos ou grupos:
  • Indivíduo/unidade familiar
Indique outras características relevantes dos usuários da terra:

Difference in the involvement of women and men: Executives of agricultural enterprises in The Netherlands are usually men.
Population density: 200-500 persons/km2
Annual population growth: 1% - 2%
100% of the land users are average wealthy and own 100% of the land.
Off-farm income specification: Dairy farmers in this part of The Netherlands spend 100% of their time on the farm. Sometimes their wives have jobs earning off-farm income.
Market orientation is commercial/market (intensive dairy farming in the NL produces for the market)

5.7 Average area of land used by land users applying the Technology

  • < 0,5 ha
  • 0,5-1 ha
  • 1-2 ha
  • 2-5 ha
  • 5-15 ha
  • 15-50 ha
  • 50-100 ha
  • 100-500 ha
  • 500-1.000 ha
  • 1.000-10.000 ha
  • > 10.000 ha
Comentários:

On average, Dutch dairy farms have 50 ha grazing land for 90 dairy cows (2013).

5.8 Propriedade de terra, direitos de uso da terra e de uso da água

Propriedade da terra:
  • Indivíduo, intitulado
Direitos do uso da terra:
  • Indivíduo
Direitos do uso da água:
  • Arrendado

5.9 Acesso a serviços e infraestrutura

Saúde:
  • Pobre
  • Moderado
  • Bom
Educação:
  • Pobre
  • Moderado
  • Bom
Assistência técnica:
  • Pobre
  • Moderado
  • Bom
Emprego (p. ex. não agrícola):
  • Pobre
  • Moderado
  • Bom
Mercados:
  • Pobre
  • Moderado
  • Bom
Energia:
  • Pobre
  • Moderado
  • Bom
Vias e transporte:
  • Pobre
  • Moderado
  • Bom
Água potável e saneamento:
  • Pobre
  • Moderado
  • Bom
Serviços finais:
  • Pobre
  • Moderado
  • Bom

6. Impactos e declarações finais

6.1 Impactos no local mostrados pela tecnologia

Impactos socioeconômicos

Produção

Produção de forragens

Diminuído
Elevado
Quantidade anterior à gestão sustentável da terra:

10.7-12.4 tons DM/ha11575

Quantidade posterior à gestão sustentável da terra:

9.8-12.4 ton DM/ha10975

Comentários/especificar:

Net grass yields (DM) measured on experimental plots. May slightly decrease due to SMD, but less loss due to trampling, increased length of grazing season. This delivers 500 kg DM/ha extra fodder produced and 30 extra grazing days.
But also loss possible: From 11575 kg DM/ha to 10975 kg DM/ha Decrease in grass yield is possible between 3 and 9%. This does not take into account losses due to tramping in situation without drains and longer grazing season under SMD.

Qualidade da forragem

Diminuído
Elevado
Quantidade anterior à gestão sustentável da terra:

275-417 kg N/ha

Quantidade posterior à gestão sustentável da terra:

235-389 kg N/ha

Comentários/especificar:

Slight decrease in N and P content of grass, but quality of grass is expected to improve due to better drained soil and improved bearing capacity

Risco de falha de produção

Elevado
Diminuído
Comentários/especificar:

SMD enable a longer grazing season, increased bearing capacity and reduced risk of flooding of fields

Renda e custos

Despesas com insumos agrícolas

Elevado
Diminuído
Comentários/especificar:

reduced additional feedstock; benefits of extra grass yields and grazing days amount to 171 euro/ha

Rendimento agrícola

Diminuído
Elevado
Comentários/especificar:

net benefits of installing SMD are approx. 54 euro per ha per year

Carga de trabalho

Elevado
Diminuído
Comentários/especificar:

trafficability and workability of fielfds improved due to drier topsoil conditions and increased bearing capacity

Outros impactos socioeconômicos

inlet and drainage of water

Comentários/especificar:

SMD require an increased inlet and drainage of water in the ditches by the water board, increased pumping hours: 10-22% in dry years; 7-12% in wet years.
Inlet: extra 36-86 mm/y in dry years, 19-45 mm in wet years
Drainage: 17-59 mm in dry years; 33-60 in wet year

Impactos socioculturais

Instituições comunitárias

Enfraquecido
Fortalecido
Comentários/especificar:

Community of Practice on SMD in peat soils enabled knowledge transfer between land users, research insttitutes, farmer's association and authorities

Instituições nacionais

Enfraquecido
Fortalecido
Comentários/especificar:

The CoP has informed water boards and provinces in the part of The Netherlands with problems due to soil subsidence

Improved livelihoods and human well-being

decreased
increased
Comentários/especificar:

The long-term experiments in The Netherlands, pilots and activities of the farmers organisation LO Nederland, the Veenweide Informatie Centrum and the Community of Practice Submerged Drainage on Peat soils have increased the understanding of participating farmers of submerged drainage, the water accounting of their land, soil and soil quality. Tjey acquired practical knowledge on the implementation of the technology. Participating farmers continue to exchange knowledge and intend to extend the area under SMD. As a result of the pilots and the activities of the Community of Practice, interest for submerged drainage was raised among other dairy farmers, policy makers and authorities.

Impactos ecológicos

Ciclo hídrico/escoamento

Qualidade de água

Diminuído
Elevado
Comentários/especificar:

slight decrease of export of N, P and SO4 to the surface water

Drenagem de excesso de água

Reduzido
Melhorado
Comentários/especificar:

SMD increased drainage by 20-65 mm per year in 2011 and 2012

Solo

Umidade do solo

Diminuído
Elevado
Comentários/especificar:

SMD increased infiltration by 8-93 mm per year in 2011 and 2012

Compactação do solo

Elevado
Reduzido
Comentários/especificar:

decreased soil subsidence to 50% (reductions of 3-6 and 5-8 mm/year)

Biodiversidade: vegetação, animais

Diversidade animal

Diminuído
Elevado
Comentários/especificar:

no direct impact on breeding conditions for meadow birds

Clima e redução de riscos de desastre

Emissão de carbono e gases de efeito estufa

Elevado
Diminuído
Comentários/especificar:

decreased GHG emissions in CO2 eq: 6.8-13.5 t/ha per year (pilot Keulevaart) and 11.3-18.1 (pilot Demmeriksekade)

Outros impactos ecológicos

Hazard towards adverse events

improved
reduced
Comentários/especificar:

quicker lowering of groundwater table after extreme rainfall events (1-5 days)

Water management

harder
easier
Comentários/especificar:

More easy water management in polders: Fewer sub-polders with fixed ditch water level; possibility to create areas with high and low surface levels

6.2 Impactos externos mostrados pela tecnologia

Danos na infraestrutura pública/privada

Elevado
Reduzido
Comentários/especificar:

reduced costs of infrastructure protection (30% or 3.5 M€/year until 2100 in the Frisian peat meadow area)

Cost of regional water management

increased
decreased
Comentários/especificar:

due to smaller differences in water levels between water management units

6.3 Exposição e sensibilidade da tecnologia às mudanças climáticas graduais e extremos/desastres relacionados ao clima (conforme o ponto de vista dos usuários da terra)

Mudança climática gradual

Mudança climática gradual
Estação do ano increase or decrease Como a tecnologia lida com isso?
Temperatura anual increase bem

Extremos (desastres) relacionados ao clima

Desastres meteorológicos
Como a tecnologia lida com isso?
Temporal local bem
Tempestade de vento local bem
Desastres climatológicos
Como a tecnologia lida com isso?
Seca não conhecido
Desastres hidrológicos
Como a tecnologia lida com isso?
Inundação geral (rio) bem

Outras consequências relacionadas ao clima

Outras consequências relacionadas ao clima
Como a tecnologia lida com isso?
Período de crescimento reduzido bem
Comentários:

Under extreme rainfall events, submerged drains cannot prevent that the groundwater level rises to above the soil surface. However, the groundwater level will fall more quickly with submerged drainas than without, on average to 10 cm lower levels.

Effects of dry summers have not yet been measured in experiments.

6.4 Análise do custo-benefício

Como os benefícios se comparam aos custos de implantação (do ponto de vista dos usuários da terra)?
Retornos a curto prazo:

ligeiramente positivo

Retornos a longo prazo:

positivo

Como os benefícios se comparam aos custos recorrentes/de manutenção(do ponto de vista dos usuários da terra)?
Retornos a curto prazo:

ligeiramente positivo

Retornos a longo prazo:

positivo

Comentários:

A longer grazing season and the extra yield of fodder are the basis for a viable implementation of submerged drainage for land users. The CBA considers establishment and maintenance costs together: establishment costs of € 1800,-/ha, discounted over 20 years, including maintenance, result in annual cost of € 117,-/ha (6.5% of the investment). Benefits include 500 kg DM/ha extra grass use and 30 extra grazing days. This would yield € 171/ha, resulting in a net saldo of € 54,-. In addition SMD are an investment in sustainable soil management, resulting in an increased economic value of the land in the long term.

6.5 Adoção da tecnologia

Se disponível, determine a quantidade (número de unidades familiares e/ou área abordada):

13

Of all those who have adopted the Technology, how many did so spontaneously, i.e. without receiving any material incentives/ payments?
  • 91-100%
Comentários:

13 land user families have adopted the Technology without any external material support

Comments on spontaneous adoption: The area under submerged drainage implemented by the 10 dairy farmers from the Community of Practice is 20 ha. The area under SMD in the three pilots described in this questionnaire is roughly an additional 0.05 km2 per farm.

There is a moderate trend towards spontaneous adoption of the Technology

Comments on adoption trend: Due to the growing interest in the peat soil area because of the relevance for climate mitigation and the economic risks of soil subsidence there is growing interest in SMD in combination iwth dynamic groundwater level management to reduce the rate of soil subsidence. Subsidy arrangements are in preparation, which will stimulate adoption of the technology by more dairy farmers.

6.7 Pontos fortes/vantagens/oportunidades da tecnologia

Strengths/ advantages/ opportunities in the land user’s view
Submerged drains increase the number of days with a good bearing capacity of grassland, and therefore enable a longer grazing season and less trampling of grass.
Higher effective yield in total.
Short term: slightly cost effective. Long term: good cost effective.
Strengths/ advantages/ opportunities in the compiler’s or other key resource person’s view
Submerged drains allow a strong reduction of soil subsidence and GHG emissions (at least 50%, even >50% if combined with higher ditch water levels).

How can they be sustained / enhanced? Further implementation by dairy farmers in the peat-meadow area. For this purpose the Community of Practice is recommended, as well as the arrangement of subsidies and the active involvement of regional government and water board. This applies to all mentioned advantages.
The quality of surface water in ditches will slightly improve.
Less problems with difference between subsiding soil surfaces and constant water levels in lakes and high water ditches (along houses).
Less sub-polders with a certain fixed ditch water level, and possibility to create areas with a high surface level (with submerged drains) and a low surface level (without SD).

6.8 Pontos fracos, desvantagens/riscos da tecnologia e formas de superá-los

Weaknesses/ disadvantages/ risks in the land user’s view How can they be overcome?
Grass yield is lower due to reduced mineralization of nitrogen. Yield could be increased due to better usage of manure (better NUE). On the other hand yield is increased due to increased number of days with a good bearing capacity of grassland, and a longer grazing season and less trampling of grass.
Weaknesses/ disadvantages/ risks in the compiler’s or other key resource person’s view How can they be overcome?
Submerged drains require more inlet water to polders. Reduction of inlet requirement is possible by smart water management. This implies water level margins of +/- 10 cm and the use of weather forecasting.
Submerged drains require a bit more pumping to drain water under extreme rain events.

7. Referências e links

7.1 Métodos/fontes de informação

7.2 Referências às publicações disponíveis

Title, author, year, ISBN:

Several reports on submerged drainage are available from Alterra, Wageningen UR (in Dutch). The report used for this WOCAT QT is:Effecten van onderwaterdrains in peilvak 9 van polder Groot-Wilnis Vinkeveen : modelstudie naar de effecten van onderwaterdrains op maaivelddaling, waterbeheer, wateroverlast en waterkwaliteit in peilvak 9 Author(s)Hendriks, R.F.A.; Akker, J.J.H. van den; Jansen, P.C.; Massop, H.Th.L. SourceWageningen : Alterra Wageningen UR, 2014 (Alterra-rapport 2480) - p. 124Other literature (in Dutch): Waarheen met het veen. Woestenberg, M. 2009. Uitegeverij Landwerk and Alterra, Wageningen URhttp://www.levenmetwater.nl/static/media/files/Boek_wmhv_def.pdf

Available from where? Costs?

Alterra Reports are available atlibrary.wur.nl

Links and modules

Expand all Collapse all

Modules