技术

Village irrigation schemes developed using the PMN/IPRODI approach [马里]

Périmètres irrigués villageois type PMN/IPRODI (French)

technologies_1630 - 马里

完整性: 80%

1. 一般信息

1.2 参与该技术评估和文件编制的资源人员和机构的联系方式

关键资源人

SLM专业人员:
SLM专业人员:

Ali Yehia Ag Mohamed

PMN/IPRODI

马里

SLM专业人员:

Kliewe Matthias

PMN/IPRODI

马里

有助于对技术进行记录/评估的项目名称(如相关)
Manual of Good Practices in Small Scale Irrigation in the Sahel (GIZ )
有助于对技术进行记录/评估的机构名称(如相关)
Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) - 德国

1.3 关于使用通过WOCAT记录的数据的条件

编制者和关键资源人员接受有关使用通过WOCAT记录数据的条件。:

1.4 所述技术的可持续性声明

这里所描述的技术在土地退化方面是否存在问题,导致无法被认为是一种可持续的土地管理技术?:

1.5 参考关于SLM方法(使用WOCAT记录的SLM方法)的调查问卷

2. SLM技术的说明

2.1 技术简介

技术定义:

Village irrigation schemes (VISs) help to control the water supply and significantly increase yields.

2.2 技术的详细说明

说明:

Village irrigation schemes (VISs) are a concept and a development typology created in the 1970s and 80s. Using a relatively simple development concept, it was possible to create production units that were built and managed by local people in areas seriously affected by drought and a sharp decline in inundation events in the 1970s and 80s. Instead of being dependent on food aid, local people operating a VIS were able to guarantee sufficient rice production to cover their village’s food needs. With one pumping facility and one canal network installed, it is possible to control the water supply for an area of at least 20 hectares, thus creating the required conditions for intensive rice growing.

Prior to the installation of the scheme, the sites are not suitable for rice growing. Yields significantly increase as a result of the work carried out. An average harvest of six tonnes per hectare increases incomes. With an average price of 125 CFA francs per kilo of paddy, the rate of sales reaches 750,000 CFA francs per hectare. The surplus per hectare is estimated at 300,000 CFA francs.

A VIS comprises a pumping station, small-scale facilities infrastructure, and irrigation and drainage networks. The pumping station consists of a pump unit fitted with a diesel motor with two or three 28 to 38 horse-power cylinders and a centrifugal pump with a capacity of 350 to 480 cubic metres per hour. The pump is positioned right alongside the water source (river, lake) and is mounted on a mobile chassis so it can be repositioned as and when required
and depending on the situation of the water source, which can vary considerably during the winter growing season. At the end of the growing season, the pump unit can be stored in a secure, weather-proof location (out of the sun, rain, etc.). Water is then pumped through a flexible hose of reinforced polyethylene (the lengths generally being multiples of 50 metres, but no longer than 150 metres) up into the delivery basin where the energy carried in the turbulent pumped water is dissipated to prevent erosion damage and where the flow is calmed from turbulent to laminar. From the delivery basin onwards, the system makes use of gravity to feed its open canal network. The majority of the network is comprised of earthen structures, with only a section of the main canal being lined (usually a length of between 150 to 300 metres leading from the delivery basin outflow). The secondary and/or tertiary canals are supplied with water through a division box that apportions supply using a system of (‘all or nothing’) gates. Plots are watered from the tertiary canal by turning on the PVC hose.
Initially, villagers are able to express their need for a VIS through a village diagnostic exercise. This installation request is then taken up by the communes’ PDESC. A formal request is then referred to the mayor and drawn up by the community. The support structure (PMN/IPRODI) reviews the request and carries out a preliminary feasibility study. Decisions are then taken in a planning workshop on which schemes to prioritise. Following this, private planning consultants are commissioned to conduct feasibility studies. In parallel, technical and financial analyses are carried out by the programme’s planners, who also validate the studies. A meeting is held to inform and raise the awareness of the beneficiary communities about the development approach. The community is then requested to contribute their labour as part of the HLIW measures. The financial contribution required for the pump unit is up to 30% of its cost.

Farming a VIS (intensive rice growing) is fundamentally different to other, more traditional production systems to which farmers are accustomed (extensive rice growing in floodplains and millet growing in non-flooded areas). VISs require the purchase of inputs and the sale of at least part of the produce. Farming a VIS requires the development and good functioning of a value chain with many more links upstream and downstream of production and beyond the confines of the village than would be found in a traditional system. Although the VIS was initially conceived as a drought response mechanism in the 1970 and 80s, VIS farming encourages farmers to become more integrated in the rural and regional economy.

2.3 技术照片

2.5 已应用该技术的、本评估所涵盖的国家/地区/地点

国家:

马里

区域/州/省:

Mali

有关地点的进一步说明:

Mopti, Timbuktu

注释:

Total area covered by the SLM Technology is 0.4 km2.
Five communes in the Mopti region and 38 communes in the Timbuktu region.
Installation of 489 VISs in at least 43 communes. Farmable land: 16,832 hectares. Approximate number of beneficiaries: 335,200 People.
The area of schemes developed by PMN/IPRODI ranges from 30 to 40 hectares. Initially, the programme installed 30-hectare schemes supplied with two-cylinder pump units. Since 2004, it has only developed 40-hectare schemes supplied with three-cylinder pump units. All the schemes are divided up into 0.25-hectare plots, making a total of 160 plots. The maximum distance from the sprinkler to the drain on the other side is 100 metres.

2.6 实施日期

如果不知道确切的年份,请说明大概的日期:
  • 10-50年前

2.7 技术介绍

详细说明该技术是如何引入的:
  • 通过项目/外部干预
注释(项目类型等):

Since 1997, by PMN/IPRODI

3. SLM技术的分类

3.1 该技术的主要目的

  • 改良生产
  • 保护生态系统

3.2 应用该技术的当前土地利用类型

同一土地单元内混合使用的土地::

具体说明混合土地使用(作物/放牧/树木):
  • 农牧业(包括农牧结合)

农田

农田

  • 一年一作
  • rice
每年的生长季节数:
  • 1
具体说明:

Longest growing period in days: 120, Longest growing period from month to month: August-November

牧场

牧场

注释:

Major land use problems (compiler’s opinion): Prior to the installation of the scheme, the sites are not suitable for rice growing.
Livestock density: 1-10 LU /km2

3.4 供水

该技术所应用土地的供水:
  • 混合雨水灌溉

3.5 该技术所属的SLM组

  • 灌溉管理(包括供水、排水)
  • 引水和排水
  • 地表水管理(泉、河、湖、海)

3.6 包含该技术的可持续土地管理措施

管理措施

管理措施

  • M7:其它
注释:

Specification of other management measures: irrigation schemes

3.7 该技术强调的主要土地退化类型

水质恶化

水质恶化

  • Ha:干旱化
注释:

Main causes of degradation: over abstraction / excessive withdrawal of water (for irrigation, industry, etc.)

3.8 防止、减少或恢复土地退化

具体数量名该技术与土地退化有关的目标:
  • 修复/恢复严重退化的土地

4. 技术规范、实施活动、投入和成本

4.1 该技术的技术图纸

技术规范(与技术图纸相关):

Layout plan of the irrigation network (in blue) and the drainage network (in red)

Technical knowledge required for field staff / advisors: high
Technical knowledge required for land users: moderate
Main technical functions: increase / maintain water stored in soil, water harvesting / increase water supply, promotion of vegetation species and varieties (quality, eg palatable fodder)

作者:

PMN/IPRODI

4.2 有关投入和成本计算的一般信息

其它/国家货币(具体说明):

CFA Franc

如相关,注明美元与当地货币的汇率(例如1美元=79.9巴西雷亚尔):1美元=:

517.0

4.3 技术建立活动

活动 时间(季度)
1. formal request for irrigation scheme
2. support structure (PMN/IPRODI) reviews the request and carries out a preliminary feasibility study
3. Decisions are then taken in a planning workshop on which schemes to prioritise
4. private planning consultants are commissioned to conduct feasibility studies
5. In parallel, technical and financial analyses are carried out by the programme’s planners
6. meeting is held to inform and raise the awareness of the beneficiary communities about the development approach
7. community is then requested to contribute their labour

4.4 技术建立所需要的费用和投入

对投入进行具体说明 单位 数量 单位成本 每项投入的总成本 土地使用者承担的成本%
其它 total construction ha 1.0 2497.0 2497.0 100.0
技术建立所需总成本 2497.0
技术建立总成本,美元 4.83

4.5 维护/经常性活动

活动 时间/频率
1. Regularly maintaining the facilities and networks
2. Agricultural advisory support and monitoring of crops by the technical services

4.7 影响成本的最重要因素

描述影响成本的最决定性因素:

The development costs are estimated at 1.3 million CFA francs per hectare (2,497 Dollar).
On the technical side, numerous scheme configurations have been observed. The most common involves a limited number of small-scale distribution control structures and a network of open, earthen canals. This type of scheme requires an investment in the order of between 1 and 1.5 million CFA francs per hectare. It also fosters the large-scale participation of villagers in all the building works, particularly excavation work and the installation of plots. At the other end of the spectrum are the VISs that have lined canals throughout their entire irrigation network. These require much more substantial investment (up to 7 or 8 million CFA francs per hectare) and building works (including plot installation) are generally carried out by contractors. As yet, no study has indicated that the yields and technical lifespan of such high-cost ‘sophisticated’ schemes are greater than those of ‘basic’ schemes.

5. 自然和人文环境

5.1 气候

年降雨量
  • < 250毫米
  • 251-500毫米
  • 501-750毫米
  • 751-1,000毫米
  • 1,001-1,500毫米
  • 1,501-2,000毫米
  • 2,001-3,000毫米
  • 3,001-4,000毫米
  • > 4,000毫米
农业气候带
  • 半干旱

Thermal climate class: tropics

5.2 地形

平均坡度:
  • 水平(0-2%)
  • 缓降(3-5%)
  • 平缓(6-10%)
  • 滚坡(11-15%)
  • 崎岖(16-30%)
  • 陡峭(31-60%)
  • 非常陡峭(>60%)
地形:
  • 高原/平原
  • 山脊
  • 山坡
  • 山地斜坡
  • 麓坡
  • 谷底
垂直分布带:
  • 0-100 m a.s.l.
  • 101-500 m a.s.l.
  • 501-1,000 m a.s.l.
  • 1,001-1,500 m a.s.l.
  • 1,501-2,000 m a.s.l.
  • 2,001-2,500 m a.s.l.
  • 2,501-3,000 m a.s.l.
  • 3,001-4,000 m a.s.l.
  • > 4,000 m a.s.l.

5.3 土壤

平均土层深度:
  • 非常浅(0-20厘米)
  • 浅(21-50厘米)
  • 中等深度(51-80厘米)
  • 深(81-120厘米)
  • 非常深(> 120厘米)
土壤质地(表土):
  • 中粒(壤土、粉土)
  • 细粒/重质(粘土)
表土有机质:
  • 中(1-3%)
  • 低(<1%)

5.4 水资源可用性和质量

地下水位表:

5-50米

地表水的可用性:

中等

水质(未处理):

仅供农业使用(灌溉)

5.5 生物多样性

物种多样性:
  • 中等

5.6 应用该技术的土地使用者的特征

生产系统的市场定位:
  • 混合(生计/商业)
非农收入:
  • 收入的10-50%
相对财富水平:
  • 贫瘠
  • 平均水平
机械化水平:
  • 手工作业
性别:
  • 男人
说明土地使用者的其他有关特征:

Population density: < 10 persons/km2
Annual population growth: 2% - 3%
10% of the land users are rich.
50% of the land users are average wealthy.
30% of the land users are poor.
10% of the land users are very poor.

5.7 应用该技术的土地使用者使用的平均土地面积

  • < 0.5 公顷
  • 0.5-1 公顷
  • 1-2 公顷
  • 2-5公顷
  • 5-15公顷
  • 15-50公顷
  • 50-100公顷
  • 100-500公顷
  • 500-1,000公顷
  • 1,000-10,000公顷
  • > 10,000公顷
这被认为是小规模、中规模还是大规模的(参照当地实际情况)?:
  • 小规模的

5.8 土地所有权、土地使用权和水使用权

注释:

The irrigated land is allocated by the chief

5.9 进入服务和基础设施的通道

健康:
  • 贫瘠
  • 适度的
教育:
  • 贫瘠
  • 适度的
技术援助:
  • 贫瘠
  • 适度的
就业(例如非农):
  • 贫瘠
  • 适度的
市场:
  • 贫瘠
  • 适度的
能源:
  • 贫瘠
  • 适度的
道路和交通:
  • 贫瘠
  • 适度的
饮用水和卫生设施:
  • 贫瘠
  • 适度的
金融服务:
  • 贫瘠
  • 适度的

6. 影响和结论性说明

6.1 该技术的现场影响

社会经济效应

生产

作物生产

降低
增加

生产故障风险

增加
降低

产品多样性

降低
增加

生产区域

降低
增加
收入和成本

农业收入

降低
增加

收入来源的多样性

降低
增加

社会文化影响

食品安全/自给自足

减少
改良

社区机构

削弱
加强

contribution to human well-being

decreased
increased
注释/具体说明:

Instead of being dependent on food aid, local people operating a VIS are able to guarantee sufficient rice production to cover their village’s food needs.

生态影响

水循环/径流

水量

降低
增加

水的回收/收集

减少
改良

地下水位/含水层

下降
补水
土壤

土壤水分

降低
增加

6.3 技术对渐变气候以及与气候相关的极端情况/灾害的暴露和敏感性(土地使用者认为的极端情况/灾害)

渐变气候

渐变气候
季节 增加或减少 该技术是如何应对的?
年温度 增加

气候有关的极端情况(灾害)

气象灾害
该技术是如何应对的?
局地暴雨
局地风暴
气候灾害
该技术是如何应对的?
干旱
水文灾害
该技术是如何应对的?
比较和缓的(河道)洪水

其他气候相关的后果

其他气候相关的后果
该技术是如何应对的?
缩短生长期

6.4 成本效益分析

技术收益与技术建立成本相比如何(从土地使用者的角度看)?
短期回报:

非常积极

长期回报:

非常积极

技术收益与技术维护成本/经常性成本相比如何(从土地使用者的角度看)?
短期回报:

非常积极

长期回报:

非常积极

6.5 技术采用

注释:

The community is requested to contribute their labour as part of the HLIW measures. The financial contribution required for the pump unit is up to 30% of its cost
There is a moderate trend towards spontaneous adoption of the Technology
On the back of over 15 years’ work and major investments, the programme has been able to develop 489 VISs across an intervention area that covers six circles (second-tier government structures). While most of the VISs grow in-season rice (July to December), 10% grow rice off season and 20%, located mainly in the Diré area, grow wheat (October to March). A small percentage of VISs (around 2%) grow two crops a year. The reasons for this low percentage are the risks involved and clashes in the growing calendar. Many of the pump units are, however, used several times over (on different sites for different crops).

6.7 该技术的优点/长处/机会

土地使用者眼中的长处/优势/机会
Option for scheme extensions to be undertaken by the beneficiaries themselves
编制者或其他关键资源人员认为的长处/优势/机会
Yields significantly increase
Building more sustainable and less costly schemes through the careful configuration of irrigation canals
Low investment costs
Existence of 15-year-old schemes that are still productive and in good condition
Possibility for beneficiaries to replace spent pump units using their own savings

6.8 技术的弱点/缺点/风险及其克服方法

编制者或其他关键资源人员认为的弱点/缺点/风险 如何克服它们?
scheme areas may become a source of conflict

7. 参考和链接

7.1 信息的方法/来源

  • 实地考察、实地调查
  • 与土地使用者的访谈
(现场)数据是什么时候汇编的?:

01/07/2012

7.2 参考可用出版物

标题、作者、年份、ISBN:

Manual of Good Practices in Small Scale Irrigation in the Sahel. Experiences from Mali. Published by GIZ in 2014.

可以从哪里获得?成本如何?

http://star-www.giz.de/starweb/giz/pub/servlet.starweb

标题、作者、年份、ISBN:

IPRODI (2009): Approche du PMN pour le développement de l’irrigation de proximité, region de Tombouctou [North Mali Programme’s approach to developing small-scale irrigation in the Timbuktu region].

模块